clib/include/bkfifo.h
2023-10-26 12:30:54 +08:00

1509 lines
41 KiB
C

#ifndef _BKFIFO_H_
#define _BKFIFO_H_
struct _kfifo_ {
unsigned int in;
unsigned int out;
unsigned int mask;
unsigned int esize;
void* data;
};
#define _SRTUCT_KFIFO_COMMON_(datatype, recsize, ptrtype) \
union { \
struct _kfifo_ kfifo; \
}
#define _SRTUCT_KFIFO_(type, size, recsize, ptrtype) \
{ \
_STRUCT_KFIFO_COMMON_(type, recsize, ptrtype); \
type buf[((size < 2) || (size & (size - 1))) ? -1 : size]; \
}
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* A generic kernel FIFO implementation
*
* Copyright (C) 2013 Stefani Seibold <stefani@seibold.net>
*/
#ifndef _LINUX_KFIFO_H
#define _LINUX_KFIFO_H
/*
* How to porting drivers to the new generic FIFO API:
*
* - Modify the declaration of the "struct kfifo *" object into a
* in-place "struct kfifo" object
* - Init the in-place object with kfifo_alloc() or kfifo_init()
* Note: The address of the in-place "struct kfifo" object must be
* passed as the first argument to this functions
* - Replace the use of __kfifo_put into kfifo_in and __kfifo_get
* into kfifo_out
* - Replace the use of kfifo_put into kfifo_in_spinlocked and kfifo_get
* into kfifo_out_spinlocked
* Note: the spinlock pointer formerly passed to kfifo_init/kfifo_alloc
* must be passed now to the kfifo_in_spinlocked and kfifo_out_spinlocked
* as the last parameter
* - The formerly __kfifo_* functions are renamed into kfifo_*
*/
/*
* Note about locking: There is no locking required until only one reader
* and one writer is using the fifo and no kfifo_reset() will be called.
* kfifo_reset_out() can be safely used, until it will be only called
* in the reader thread.
* For multiple writer and one reader there is only a need to lock the writer.
* And vice versa for only one writer and multiple reader there is only a need
* to lock the reader.
*/
struct __kfifo {
unsigned int in;
unsigned int out;
unsigned int mask;
unsigned int esize;
void* data;
};
#define __STRUCT_KFIFO_COMMON(datatype, recsize, ptrtype) \
union { \
struct __kfifo kfifo; \
datatype *type; \
const datatype *const_type; \
char (*rectype)[recsize]; \
ptrtype *ptr; \
ptrtype const *ptr_const; \
}
#define __STRUCT_KFIFO(type, size, recsize, ptrtype) \
{ \
__STRUCT_KFIFO_COMMON(type, recsize, ptrtype); \
type buf[((size < 2) || (size & (size - 1))) ? -1 : size]; \
}
#define STRUCT_KFIFO(type, size) \
struct __STRUCT_KFIFO(type, size, 0, type)
#define __STRUCT_KFIFO_PTR(type, recsize, ptrtype) \
{ \
__STRUCT_KFIFO_COMMON(type, recsize, ptrtype); \
type buf[0]; \
}
#define STRUCT_KFIFO_PTR(type) \
struct __STRUCT_KFIFO_PTR(type, 0, type)
/*
* define compatibility "struct kfifo" for dynamic allocated fifos
*/
struct kfifo __STRUCT_KFIFO_PTR(unsigned char, 0, void);
#define STRUCT_KFIFO_REC_1(size) \
struct __STRUCT_KFIFO(unsigned char, size, 1, void)
#define STRUCT_KFIFO_REC_2(size) \
struct __STRUCT_KFIFO(unsigned char, size, 2, void)
/*
* define kfifo_rec types
*/
struct kfifo_rec_ptr_1 __STRUCT_KFIFO_PTR(unsigned char, 1, void);
struct kfifo_rec_ptr_2 __STRUCT_KFIFO_PTR(unsigned char, 2, void);
/*
* helper macro to distinguish between real in place fifo where the fifo
* array is a part of the structure and the fifo type where the array is
* outside of the fifo structure.
*/
#define __is_kfifo_ptr(fifo) \
(sizeof(*fifo) == sizeof(STRUCT_KFIFO_PTR(typeof(*(fifo)->type))))
/**
* DECLARE_KFIFO_PTR - macro to declare a fifo pointer object
* @fifo: name of the declared fifo
* @type: type of the fifo elements
*/
#define DECLARE_KFIFO_PTR(fifo, type) STRUCT_KFIFO_PTR(type) fifo
/**
* DECLARE_KFIFO - macro to declare a fifo object
* @fifo: name of the declared fifo
* @type: type of the fifo elements
* @size: the number of elements in the fifo, this must be a power of 2
*/
#define DECLARE_KFIFO(fifo, type, size) STRUCT_KFIFO(type, size) fifo
/**
* INIT_KFIFO - Initialize a fifo declared by DECLARE_KFIFO
* @fifo: name of the declared fifo datatype
*/
#define INIT_KFIFO(fifo) \
(void)({ \
typeof(&(fifo)) __tmp = &(fifo); \
struct __kfifo *__kfifo = &__tmp->kfifo; \
__kfifo->in = 0; \
__kfifo->out = 0; \
__kfifo->mask = __is_kfifo_ptr(__tmp) ? 0 : ARRAY_SIZE(__tmp->buf) - 1;\
__kfifo->esize = sizeof(*__tmp->buf); \
__kfifo->data = __is_kfifo_ptr(__tmp) ? NULL : __tmp->buf; \
})
/**
* DEFINE_KFIFO - macro to define and initialize a fifo
* @fifo: name of the declared fifo datatype
* @type: type of the fifo elements
* @size: the number of elements in the fifo, this must be a power of 2
*
* Note: the macro can be used for global and local fifo data type variables.
*/
#define DEFINE_KFIFO(fifo, type, size) \
DECLARE_KFIFO(fifo, type, size) = \
(typeof(fifo)) { \
{ \
{ \
.in = 0, \
.out = 0, \
.mask = __is_kfifo_ptr(&(fifo)) ? \
0 : \
ARRAY_SIZE((fifo).buf) - 1, \
.esize = sizeof(*(fifo).buf), \
.data = __is_kfifo_ptr(&(fifo)) ? \
NULL : \
(fifo).buf, \
} \
} \
}
//static inline unsigned int __must_check
//__kfifo_uint_must_check_helper(unsigned int val)
//{
// return val;
//}
//
//static inline int __must_check
//__kfifo_int_must_check_helper(int val)
//{
// return val;
//}
/**
* kfifo_initialized - Check if the fifo is initialized
* @fifo: address of the fifo to check
*
* Return %true if fifo is initialized, otherwise %false.
* Assumes the fifo was 0 before.
*/
#define kfifo_initialized(fifo) ((fifo)->kfifo.mask)
/**
* kfifo_esize - returns the size of the element managed by the fifo
* @fifo: address of the fifo to be used
*/
#define kfifo_esize(fifo) ((fifo)->kfifo.esize)
/**
* kfifo_recsize - returns the size of the record length field
* @fifo: address of the fifo to be used
*/
#define kfifo_recsize(fifo) (sizeof(*(fifo)->rectype))
/**
* kfifo_size - returns the size of the fifo in elements
* @fifo: address of the fifo to be used
*/
#define kfifo_size(fifo) ((fifo)->kfifo.mask + 1)
/**
* kfifo_reset - removes the entire fifo content
* @fifo: address of the fifo to be used
*
* Note: usage of kfifo_reset() is dangerous. It should be only called when the
* fifo is exclusived locked or when it is secured that no other thread is
* accessing the fifo.
*/
#define kfifo_reset(fifo) \
(void)({ \
typeof((fifo) + 1) __tmp = (fifo); \
__tmp->kfifo.in = __tmp->kfifo.out = 0; \
})
/**
* kfifo_reset_out - skip fifo content
* @fifo: address of the fifo to be used
*
* Note: The usage of kfifo_reset_out() is safe until it will be only called
* from the reader thread and there is only one concurrent reader. Otherwise
* it is dangerous and must be handled in the same way as kfifo_reset().
*/
#define kfifo_reset_out(fifo) \
(void)({ \
typeof((fifo) + 1) __tmp = (fifo); \
__tmp->kfifo.out = __tmp->kfifo.in; \
})
/**
* kfifo_len - returns the number of used elements in the fifo
* @fifo: address of the fifo to be used
*/
#define kfifo_len(fifo) \
({ \
typeof((fifo) + 1) __tmpl = (fifo); \
__tmpl->kfifo.in - __tmpl->kfifo.out; \
})
/**
* kfifo_is_empty - returns true if the fifo is empty
* @fifo: address of the fifo to be used
*/
#define kfifo_is_empty(fifo) \
({ \
typeof((fifo) + 1) __tmpq = (fifo); \
__tmpq->kfifo.in == __tmpq->kfifo.out; \
})
/**
* kfifo_is_empty_spinlocked - returns true if the fifo is empty using
* a spinlock for locking
* @fifo: address of the fifo to be used
* @lock: spinlock to be used for locking
*/
#define kfifo_is_empty_spinlocked(fifo, lock) \
({ \
unsigned long __flags; \
bool __ret; \
spin_lock_irqsave(lock, __flags); \
__ret = kfifo_is_empty(fifo); \
spin_unlock_irqrestore(lock, __flags); \
__ret; \
})
/**
* kfifo_is_empty_spinlocked_noirqsave - returns true if the fifo is empty
* using a spinlock for locking, doesn't disable interrupts
* @fifo: address of the fifo to be used
* @lock: spinlock to be used for locking
*/
#define kfifo_is_empty_spinlocked_noirqsave(fifo, lock) \
({ \
bool __ret; \
spin_lock(lock); \
__ret = kfifo_is_empty(fifo); \
spin_unlock(lock); \
__ret; \
})
/**
* kfifo_is_full - returns true if the fifo is full
* @fifo: address of the fifo to be used
*/
#define kfifo_is_full(fifo) \
({ \
typeof((fifo) + 1) __tmpq = (fifo); \
kfifo_len(__tmpq) > __tmpq->kfifo.mask; \
})
/**
* kfifo_avail - returns the number of unused elements in the fifo
* @fifo: address of the fifo to be used
*/
#define kfifo_avail(fifo) \
__kfifo_uint_must_check_helper( \
({ \
typeof((fifo) + 1) __tmpq = (fifo); \
const size_t __recsize = sizeof(*__tmpq->rectype); \
unsigned int __avail = kfifo_size(__tmpq) - kfifo_len(__tmpq); \
(__recsize) ? ((__avail <= __recsize) ? 0 : \
__kfifo_max_r(__avail - __recsize, __recsize)) : \
__avail; \
}) \
)
/**
* kfifo_skip - skip output data
* @fifo: address of the fifo to be used
*/
#define kfifo_skip(fifo) \
(void)({ \
typeof((fifo) + 1) __tmp = (fifo); \
const size_t __recsize = sizeof(*__tmp->rectype); \
struct __kfifo *__kfifo = &__tmp->kfifo; \
if (__recsize) \
__kfifo_skip_r(__kfifo, __recsize); \
else \
__kfifo->out++; \
})
/**
* kfifo_peek_len - gets the size of the next fifo record
* @fifo: address of the fifo to be used
*
* This function returns the size of the next fifo record in number of bytes.
*/
#define kfifo_peek_len(fifo) \
__kfifo_uint_must_check_helper( \
({ \
typeof((fifo) + 1) __tmp = (fifo); \
const size_t __recsize = sizeof(*__tmp->rectype); \
struct __kfifo *__kfifo = &__tmp->kfifo; \
(!__recsize) ? kfifo_len(__tmp) * sizeof(*__tmp->type) : \
__kfifo_len_r(__kfifo, __recsize); \
}) \
)
/**
* kfifo_alloc - dynamically allocates a new fifo buffer
* @fifo: pointer to the fifo
* @size: the number of elements in the fifo, this must be a power of 2
* @gfp_mask: get_free_pages mask, passed to kmalloc()
*
* This macro dynamically allocates a new fifo buffer.
*
* The number of elements will be rounded-up to a power of 2.
* The fifo will be release with kfifo_free().
* Return 0 if no error, otherwise an error code.
*/
#define kfifo_alloc(fifo, size, gfp_mask) \
__kfifo_int_must_check_helper( \
({ \
typeof((fifo) + 1) __tmp = (fifo); \
struct __kfifo *__kfifo = &__tmp->kfifo; \
__is_kfifo_ptr(__tmp) ? \
__kfifo_alloc(__kfifo, size, sizeof(*__tmp->type), gfp_mask) : \
-EINVAL; \
}) \
)
/**
* kfifo_free - frees the fifo
* @fifo: the fifo to be freed
*/
#define kfifo_free(fifo) \
({ \
typeof((fifo) + 1) __tmp = (fifo); \
struct __kfifo *__kfifo = &__tmp->kfifo; \
if (__is_kfifo_ptr(__tmp)) \
__kfifo_free(__kfifo); \
})
/**
* kfifo_init - initialize a fifo using a preallocated buffer
* @fifo: the fifo to assign the buffer
* @buffer: the preallocated buffer to be used
* @size: the size of the internal buffer, this have to be a power of 2
*
* This macro initializes a fifo using a preallocated buffer.
*
* The number of elements will be rounded-up to a power of 2.
* Return 0 if no error, otherwise an error code.
*/
#define kfifo_init(fifo, buffer, size) \
({ \
typeof((fifo) + 1) __tmp = (fifo); \
struct __kfifo *__kfifo = &__tmp->kfifo; \
__is_kfifo_ptr(__tmp) ? \
__kfifo_init(__kfifo, buffer, size, sizeof(*__tmp->type)) : \
-EINVAL; \
})
/**
* kfifo_put - put data into the fifo
* @fifo: address of the fifo to be used
* @val: the data to be added
*
* This macro copies the given value into the fifo.
* It returns 0 if the fifo was full. Otherwise it returns the number
* processed elements.
*
* Note that with only one concurrent reader and one concurrent
* writer, you don't need extra locking to use these macro.
*/
#define kfifo_put(fifo, val) \
({ \
typeof((fifo) + 1) __tmp = (fifo); \
typeof(*__tmp->const_type) __val = (val); \
unsigned int __ret; \
size_t __recsize = sizeof(*__tmp->rectype); \
struct __kfifo *__kfifo = &__tmp->kfifo; \
if (__recsize) \
__ret = __kfifo_in_r(__kfifo, &__val, sizeof(__val), \
__recsize); \
else { \
__ret = !kfifo_is_full(__tmp); \
if (__ret) { \
(__is_kfifo_ptr(__tmp) ? \
((typeof(__tmp->type))__kfifo->data) : \
(__tmp->buf) \
)[__kfifo->in & __tmp->kfifo.mask] = \
*(typeof(__tmp->type))&__val; \
smp_wmb(); \
__kfifo->in++; \
} \
} \
__ret; \
})
/**
* kfifo_get - get data from the fifo
* @fifo: address of the fifo to be used
* @val: address where to store the data
*
* This macro reads the data from the fifo.
* It returns 0 if the fifo was empty. Otherwise it returns the number
* processed elements.
*
* Note that with only one concurrent reader and one concurrent
* writer, you don't need extra locking to use these macro.
*/
#define kfifo_get(fifo, val) \
__kfifo_uint_must_check_helper( \
({ \
typeof((fifo) + 1) __tmp = (fifo); \
typeof(__tmp->ptr) __val = (val); \
unsigned int __ret; \
const size_t __recsize = sizeof(*__tmp->rectype); \
struct __kfifo *__kfifo = &__tmp->kfifo; \
if (__recsize) \
__ret = __kfifo_out_r(__kfifo, __val, sizeof(*__val), \
__recsize); \
else { \
__ret = !kfifo_is_empty(__tmp); \
if (__ret) { \
*(typeof(__tmp->type))__val = \
(__is_kfifo_ptr(__tmp) ? \
((typeof(__tmp->type))__kfifo->data) : \
(__tmp->buf) \
)[__kfifo->out & __tmp->kfifo.mask]; \
smp_wmb(); \
__kfifo->out++; \
} \
} \
__ret; \
}) \
)
/**
* kfifo_peek - get data from the fifo without removing
* @fifo: address of the fifo to be used
* @val: address where to store the data
*
* This reads the data from the fifo without removing it from the fifo.
* It returns 0 if the fifo was empty. Otherwise it returns the number
* processed elements.
*
* Note that with only one concurrent reader and one concurrent
* writer, you don't need extra locking to use these macro.
*/
#define kfifo_peek(fifo, val) \
__kfifo_uint_must_check_helper( \
({ \
typeof((fifo) + 1) __tmp = (fifo); \
typeof(__tmp->ptr) __val = (val); \
unsigned int __ret; \
const size_t __recsize = sizeof(*__tmp->rectype); \
struct __kfifo *__kfifo = &__tmp->kfifo; \
if (__recsize) \
__ret = __kfifo_out_peek_r(__kfifo, __val, sizeof(*__val), \
__recsize); \
else { \
__ret = !kfifo_is_empty(__tmp); \
if (__ret) { \
*(typeof(__tmp->type))__val = \
(__is_kfifo_ptr(__tmp) ? \
((typeof(__tmp->type))__kfifo->data) : \
(__tmp->buf) \
)[__kfifo->out & __tmp->kfifo.mask]; \
smp_wmb(); \
} \
} \
__ret; \
}) \
)
/**
* kfifo_in - put data into the fifo
* @fifo: address of the fifo to be used
* @buf: the data to be added
* @n: number of elements to be added
*
* This macro copies the given buffer into the fifo and returns the
* number of copied elements.
*
* Note that with only one concurrent reader and one concurrent
* writer, you don't need extra locking to use these macro.
*/
#define kfifo_in(fifo, buf, n) \
({ \
typeof((fifo) + 1) __tmp = (fifo); \
typeof(__tmp->ptr_const) __buf = (buf); \
unsigned long __n = (n); \
const size_t __recsize = sizeof(*__tmp->rectype); \
struct __kfifo *__kfifo = &__tmp->kfifo; \
(__recsize) ?\
__kfifo_in_r(__kfifo, __buf, __n, __recsize) : \
__kfifo_in(__kfifo, __buf, __n); \
})
/**
* kfifo_in_spinlocked - put data into the fifo using a spinlock for locking
* @fifo: address of the fifo to be used
* @buf: the data to be added
* @n: number of elements to be added
* @lock: pointer to the spinlock to use for locking
*
* This macro copies the given values buffer into the fifo and returns the
* number of copied elements.
*/
#define kfifo_in_spinlocked(fifo, buf, n, lock) \
({ \
unsigned long __flags; \
unsigned int __ret; \
spin_lock_irqsave(lock, __flags); \
__ret = kfifo_in(fifo, buf, n); \
spin_unlock_irqrestore(lock, __flags); \
__ret; \
})
/**
* kfifo_in_spinlocked_noirqsave - put data into fifo using a spinlock for
* locking, don't disable interrupts
* @fifo: address of the fifo to be used
* @buf: the data to be added
* @n: number of elements to be added
* @lock: pointer to the spinlock to use for locking
*
* This is a variant of kfifo_in_spinlocked() but uses spin_lock/unlock()
* for locking and doesn't disable interrupts.
*/
#define kfifo_in_spinlocked_noirqsave(fifo, buf, n, lock) \
({ \
unsigned int __ret; \
spin_lock(lock); \
__ret = kfifo_in(fifo, buf, n); \
spin_unlock(lock); \
__ret; \
})
/* alias for kfifo_in_spinlocked, will be removed in a future release */
#define kfifo_in_locked(fifo, buf, n, lock) \
kfifo_in_spinlocked(fifo, buf, n, lock)
/**
* kfifo_out - get data from the fifo
* @fifo: address of the fifo to be used
* @buf: pointer to the storage buffer
* @n: max. number of elements to get
*
* This macro get some data from the fifo and return the numbers of elements
* copied.
*
* Note that with only one concurrent reader and one concurrent
* writer, you don't need extra locking to use these macro.
*/
#define kfifo_out(fifo, buf, n) \
__kfifo_uint_must_check_helper( \
({ \
typeof((fifo) + 1) __tmp = (fifo); \
typeof(__tmp->ptr) __buf = (buf); \
unsigned long __n = (n); \
const size_t __recsize = sizeof(*__tmp->rectype); \
struct __kfifo *__kfifo = &__tmp->kfifo; \
(__recsize) ?\
__kfifo_out_r(__kfifo, __buf, __n, __recsize) : \
__kfifo_out(__kfifo, __buf, __n); \
}) \
)
/**
* kfifo_out_spinlocked - get data from the fifo using a spinlock for locking
* @fifo: address of the fifo to be used
* @buf: pointer to the storage buffer
* @n: max. number of elements to get
* @lock: pointer to the spinlock to use for locking
*
* This macro get the data from the fifo and return the numbers of elements
* copied.
*/
#define kfifo_out_spinlocked(fifo, buf, n, lock) \
__kfifo_uint_must_check_helper( \
({ \
unsigned long __flags; \
unsigned int __ret; \
spin_lock_irqsave(lock, __flags); \
__ret = kfifo_out(fifo, buf, n); \
spin_unlock_irqrestore(lock, __flags); \
__ret; \
}) \
)
/**
* kfifo_out_spinlocked_noirqsave - get data from the fifo using a spinlock
* for locking, don't disable interrupts
* @fifo: address of the fifo to be used
* @buf: pointer to the storage buffer
* @n: max. number of elements to get
* @lock: pointer to the spinlock to use for locking
*
* This is a variant of kfifo_out_spinlocked() which uses spin_lock/unlock()
* for locking and doesn't disable interrupts.
*/
#define kfifo_out_spinlocked_noirqsave(fifo, buf, n, lock) \
__kfifo_uint_must_check_helper( \
({ \
unsigned int __ret; \
spin_lock(lock); \
__ret = kfifo_out(fifo, buf, n); \
spin_unlock(lock); \
__ret; \
}) \
)
/* alias for kfifo_out_spinlocked, will be removed in a future release */
#define kfifo_out_locked(fifo, buf, n, lock) \
kfifo_out_spinlocked(fifo, buf, n, lock)
/**
* kfifo_from_user - puts some data from user space into the fifo
* @fifo: address of the fifo to be used
* @from: pointer to the data to be added
* @len: the length of the data to be added
* @copied: pointer to output variable to store the number of copied bytes
*
* This macro copies at most @len bytes from the @from into the
* fifo, depending of the available space and returns -EFAULT/0.
*
* Note that with only one concurrent reader and one concurrent
* writer, you don't need extra locking to use these macro.
*/
#define kfifo_from_user(fifo, from, len, copied) \
__kfifo_uint_must_check_helper( \
({ \
typeof((fifo) + 1) __tmp = (fifo); \
const void __user *__from = (from); \
unsigned int __len = (len); \
unsigned int *__copied = (copied); \
const size_t __recsize = sizeof(*__tmp->rectype); \
struct __kfifo *__kfifo = &__tmp->kfifo; \
(__recsize) ? \
__kfifo_from_user_r(__kfifo, __from, __len, __copied, __recsize) : \
__kfifo_from_user(__kfifo, __from, __len, __copied); \
}) \
)
/**
* kfifo_to_user - copies data from the fifo into user space
* @fifo: address of the fifo to be used
* @to: where the data must be copied
* @len: the size of the destination buffer
* @copied: pointer to output variable to store the number of copied bytes
*
* This macro copies at most @len bytes from the fifo into the
* @to buffer and returns -EFAULT/0.
*
* Note that with only one concurrent reader and one concurrent
* writer, you don't need extra locking to use these macro.
*/
#define kfifo_to_user(fifo, to, len, copied) \
__kfifo_int_must_check_helper( \
({ \
typeof((fifo) + 1) __tmp = (fifo); \
void __user *__to = (to); \
unsigned int __len = (len); \
unsigned int *__copied = (copied); \
const size_t __recsize = sizeof(*__tmp->rectype); \
struct __kfifo *__kfifo = &__tmp->kfifo; \
(__recsize) ? \
__kfifo_to_user_r(__kfifo, __to, __len, __copied, __recsize) : \
__kfifo_to_user(__kfifo, __to, __len, __copied); \
}) \
)
/**
* kfifo_dma_in_prepare - setup a scatterlist for DMA input
* @fifo: address of the fifo to be used
* @sgl: pointer to the scatterlist array
* @nents: number of entries in the scatterlist array
* @len: number of elements to transfer
*
* This macro fills a scatterlist for DMA input.
* It returns the number entries in the scatterlist array.
*
* Note that with only one concurrent reader and one concurrent
* writer, you don't need extra locking to use these macros.
*/
#define kfifo_dma_in_prepare(fifo, sgl, nents, len) \
({ \
typeof((fifo) + 1) __tmp = (fifo); \
struct scatterlist *__sgl = (sgl); \
int __nents = (nents); \
unsigned int __len = (len); \
const size_t __recsize = sizeof(*__tmp->rectype); \
struct __kfifo *__kfifo = &__tmp->kfifo; \
(__recsize) ? \
__kfifo_dma_in_prepare_r(__kfifo, __sgl, __nents, __len, __recsize) : \
__kfifo_dma_in_prepare(__kfifo, __sgl, __nents, __len); \
})
/**
* kfifo_dma_in_finish - finish a DMA IN operation
* @fifo: address of the fifo to be used
* @len: number of bytes to received
*
* This macro finish a DMA IN operation. The in counter will be updated by
* the len parameter. No error checking will be done.
*
* Note that with only one concurrent reader and one concurrent
* writer, you don't need extra locking to use these macros.
*/
#define kfifo_dma_in_finish(fifo, len) \
(void)({ \
typeof((fifo) + 1) __tmp = (fifo); \
unsigned int __len = (len); \
const size_t __recsize = sizeof(*__tmp->rectype); \
struct __kfifo *__kfifo = &__tmp->kfifo; \
if (__recsize) \
__kfifo_dma_in_finish_r(__kfifo, __len, __recsize); \
else \
__kfifo->in += __len / sizeof(*__tmp->type); \
})
/**
* kfifo_dma_out_prepare - setup a scatterlist for DMA output
* @fifo: address of the fifo to be used
* @sgl: pointer to the scatterlist array
* @nents: number of entries in the scatterlist array
* @len: number of elements to transfer
*
* This macro fills a scatterlist for DMA output which at most @len bytes
* to transfer.
* It returns the number entries in the scatterlist array.
* A zero means there is no space available and the scatterlist is not filled.
*
* Note that with only one concurrent reader and one concurrent
* writer, you don't need extra locking to use these macros.
*/
#define kfifo_dma_out_prepare(fifo, sgl, nents, len) \
({ \
typeof((fifo) + 1) __tmp = (fifo); \
struct scatterlist *__sgl = (sgl); \
int __nents = (nents); \
unsigned int __len = (len); \
const size_t __recsize = sizeof(*__tmp->rectype); \
struct __kfifo *__kfifo = &__tmp->kfifo; \
(__recsize) ? \
__kfifo_dma_out_prepare_r(__kfifo, __sgl, __nents, __len, __recsize) : \
__kfifo_dma_out_prepare(__kfifo, __sgl, __nents, __len); \
})
/**
* kfifo_dma_out_finish - finish a DMA OUT operation
* @fifo: address of the fifo to be used
* @len: number of bytes transferred
*
* This macro finish a DMA OUT operation. The out counter will be updated by
* the len parameter. No error checking will be done.
*
* Note that with only one concurrent reader and one concurrent
* writer, you don't need extra locking to use these macros.
*/
#define kfifo_dma_out_finish(fifo, len) \
(void)({ \
typeof((fifo) + 1) __tmp = (fifo); \
unsigned int __len = (len); \
const size_t __recsize = sizeof(*__tmp->rectype); \
struct __kfifo *__kfifo = &__tmp->kfifo; \
if (__recsize) \
__kfifo_dma_out_finish_r(__kfifo, __recsize); \
else \
__kfifo->out += __len / sizeof(*__tmp->type); \
})
/**
* kfifo_out_peek - gets some data from the fifo
* @fifo: address of the fifo to be used
* @buf: pointer to the storage buffer
* @n: max. number of elements to get
*
* This macro get the data from the fifo and return the numbers of elements
* copied. The data is not removed from the fifo.
*
* Note that with only one concurrent reader and one concurrent
* writer, you don't need extra locking to use these macro.
*/
#define kfifo_out_peek(fifo, buf, n) \
__kfifo_uint_must_check_helper( \
({ \
typeof((fifo) + 1) __tmp = (fifo); \
typeof(__tmp->ptr) __buf = (buf); \
unsigned long __n = (n); \
const size_t __recsize = sizeof(*__tmp->rectype); \
struct __kfifo *__kfifo = &__tmp->kfifo; \
(__recsize) ? \
__kfifo_out_peek_r(__kfifo, __buf, __n, __recsize) : \
__kfifo_out_peek(__kfifo, __buf, __n); \
}) \
)
//extern int __kfifo_alloc(struct __kfifo* fifo, unsigned int size,
// size_t esize, gfp_t gfp_mask);
//
//extern void __kfifo_free(struct __kfifo* fifo);
//
//extern int __kfifo_init(struct __kfifo* fifo, void* buffer,
// unsigned int size, size_t esize);
//
//extern unsigned int __kfifo_in(struct __kfifo* fifo,
// const void* buf, unsigned int len);
//
//extern unsigned int __kfifo_out(struct __kfifo* fifo,
// void* buf, unsigned int len);
//
//extern int __kfifo_from_user(struct __kfifo* fifo,
// const void __user* from, unsigned long len, unsigned int* copied);
//
//extern int __kfifo_to_user(struct __kfifo* fifo,
// void __user* to, unsigned long len, unsigned int* copied);
//
//extern unsigned int __kfifo_dma_in_prepare(struct __kfifo* fifo,
// struct scatterlist* sgl, int nents, unsigned int len);
//
//extern unsigned int __kfifo_dma_out_prepare(struct __kfifo* fifo,
// struct scatterlist* sgl, int nents, unsigned int len);
//
//extern unsigned int __kfifo_out_peek(struct __kfifo* fifo,
// void* buf, unsigned int len);
//
//extern unsigned int __kfifo_in_r(struct __kfifo* fifo,
// const void* buf, unsigned int len, size_t recsize);
//
//extern unsigned int __kfifo_out_r(struct __kfifo* fifo,
// void* buf, unsigned int len, size_t recsize);
//
//extern int __kfifo_from_user_r(struct __kfifo* fifo,
// const void __user* from, unsigned long len, unsigned int* copied,
// size_t recsize);
//
//extern int __kfifo_to_user_r(struct __kfifo* fifo, void __user* to,
// unsigned long len, unsigned int* copied, size_t recsize);
//
//extern unsigned int __kfifo_dma_in_prepare_r(struct __kfifo* fifo,
// struct scatterlist* sgl, int nents, unsigned int len, size_t recsize);
//
//extern void __kfifo_dma_in_finish_r(struct __kfifo* fifo,
// unsigned int len, size_t recsize);
//
//extern unsigned int __kfifo_dma_out_prepare_r(struct __kfifo* fifo,
// struct scatterlist* sgl, int nents, unsigned int len, size_t recsize);
//
//extern void __kfifo_dma_out_finish_r(struct __kfifo* fifo, size_t recsize);
//
//extern unsigned int __kfifo_len_r(struct __kfifo* fifo, size_t recsize);
//
//extern void __kfifo_skip_r(struct __kfifo* fifo, size_t recsize);
//
//extern unsigned int __kfifo_out_peek_r(struct __kfifo* fifo,
// void* buf, unsigned int len, size_t recsize);
//
//extern unsigned int __kfifo_max_r(unsigned int len, size_t recsize);
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* A generic kernel FIFO implementation
*
* Copyright (C) 2009/2010 Stefani Seibold <stefani@seibold.net>
*/
//#include <linux/kernel.h>
//#include <linux/export.h>
//#include <linux/slab.h>
//#include <linux/err.h>
//#include <linux/log2.h>
//#include <linux/uaccess.h>
//#include <linux/kfifo.h>
// /*
// * internal helper to calculate the unused elements in a fifo
// */
//static inline unsigned int kfifo_unused(struct __kfifo* fifo)
//{
// return (fifo->mask + 1) - (fifo->in - fifo->out);
//}
//
//int __kfifo_alloc(struct __kfifo* fifo, unsigned int size,
// size_t esize, gfp_t gfp_mask)
//{
// /*
// * round up to the next power of 2, since our 'let the indices
// * wrap' technique works only in this case.
// */
// size = roundup_pow_of_two(size);
//
// fifo->in = 0;
// fifo->out = 0;
// fifo->esize = esize;
//
// if (size < 2) {
// fifo->data = NULL;
// fifo->mask = 0;
// return -EINVAL;
// }
//
// fifo->data = kmalloc_array(esize, size, gfp_mask);
//
// if (!fifo->data) {
// fifo->mask = 0;
// return -ENOMEM;
// }
// fifo->mask = size - 1;
//
// return 0;
//}
//EXPORT_SYMBOL(__kfifo_alloc);
//
//void __kfifo_free(struct __kfifo* fifo)
//{
// kfree(fifo->data);
// fifo->in = 0;
// fifo->out = 0;
// fifo->esize = 0;
// fifo->data = NULL;
// fifo->mask = 0;
//}
//EXPORT_SYMBOL(__kfifo_free);
//
//int __kfifo_init(struct __kfifo* fifo, void* buffer,
// unsigned int size, size_t esize)
//{
// size /= esize;
//
// if (!is_power_of_2(size))
// size = rounddown_pow_of_two(size);
//
// fifo->in = 0;
// fifo->out = 0;
// fifo->esize = esize;
// fifo->data = buffer;
//
// if (size < 2) {
// fifo->mask = 0;
// return -EINVAL;
// }
// fifo->mask = size - 1;
//
// return 0;
//}
//EXPORT_SYMBOL(__kfifo_init);
//
//static void kfifo_copy_in(struct __kfifo* fifo, const void* src,
// unsigned int len, unsigned int off)
//{
// unsigned int size = fifo->mask + 1;
// unsigned int esize = fifo->esize;
// unsigned int l;
//
// off &= fifo->mask;
// if (esize != 1) {
// off *= esize;
// size *= esize;
// len *= esize;
// }
// l = min(len, size - off);
//
// memcpy(fifo->data + off, src, l);
// memcpy(fifo->data, src + l, len - l);
// /*
// * make sure that the data in the fifo is up to date before
// * incrementing the fifo->in index counter
// */
// smp_wmb();
//}
//
//unsigned int __kfifo_in(struct __kfifo* fifo,
// const void* buf, unsigned int len)
//{
// unsigned int l;
//
// l = kfifo_unused(fifo);
// if (len > l)
// len = l;
//
// kfifo_copy_in(fifo, buf, len, fifo->in);
// fifo->in += len;
// return len;
//}
//EXPORT_SYMBOL(__kfifo_in);
//
//static void kfifo_copy_out(struct __kfifo* fifo, void* dst,
// unsigned int len, unsigned int off)
//{
// unsigned int size = fifo->mask + 1;
// unsigned int esize = fifo->esize;
// unsigned int l;
//
// off &= fifo->mask;
// if (esize != 1) {
// off *= esize;
// size *= esize;
// len *= esize;
// }
// l = min(len, size - off);
//
// memcpy(dst, fifo->data + off, l);
// memcpy(dst + l, fifo->data, len - l);
// /*
// * make sure that the data is copied before
// * incrementing the fifo->out index counter
// */
// smp_wmb();
//}
//
//unsigned int __kfifo_out_peek(struct __kfifo* fifo,
// void* buf, unsigned int len)
//{
// unsigned int l;
//
// l = fifo->in - fifo->out;
// if (len > l)
// len = l;
//
// kfifo_copy_out(fifo, buf, len, fifo->out);
// return len;
//}
//EXPORT_SYMBOL(__kfifo_out_peek);
//
//unsigned int __kfifo_out(struct __kfifo* fifo,
// void* buf, unsigned int len)
//{
// len = __kfifo_out_peek(fifo, buf, len);
// fifo->out += len;
// return len;
//}
//EXPORT_SYMBOL(__kfifo_out);
//
//static unsigned long kfifo_copy_from_user(struct __kfifo* fifo,
// const void __user* from, unsigned int len, unsigned int off,
// unsigned int* copied)
//{
// unsigned int size = fifo->mask + 1;
// unsigned int esize = fifo->esize;
// unsigned int l;
// unsigned long ret;
//
// off &= fifo->mask;
// if (esize != 1) {
// off *= esize;
// size *= esize;
// len *= esize;
// }
// l = min(len, size - off);
//
// ret = copy_from_user(fifo->data + off, from, l);
// if (unlikely(ret))
// ret = DIV_ROUND_UP(ret + len - l, esize);
// else {
// ret = copy_from_user(fifo->data, from + l, len - l);
// if (unlikely(ret))
// ret = DIV_ROUND_UP(ret, esize);
// }
// /*
// * make sure that the data in the fifo is up to date before
// * incrementing the fifo->in index counter
// */
// smp_wmb();
// *copied = len - ret * esize;
// /* return the number of elements which are not copied */
// return ret;
//}
//
//int __kfifo_from_user(struct __kfifo* fifo, const void __user* from,
// unsigned long len, unsigned int* copied)
//{
// unsigned int l;
// unsigned long ret;
// unsigned int esize = fifo->esize;
// int err;
//
// if (esize != 1)
// len /= esize;
//
// l = kfifo_unused(fifo);
// if (len > l)
// len = l;
//
// ret = kfifo_copy_from_user(fifo, from, len, fifo->in, copied);
// if (unlikely(ret)) {
// len -= ret;
// err = -EFAULT;
// }
// else
// err = 0;
// fifo->in += len;
// return err;
//}
//EXPORT_SYMBOL(__kfifo_from_user);
//
//static unsigned long kfifo_copy_to_user(struct __kfifo* fifo, void __user* to,
// unsigned int len, unsigned int off, unsigned int* copied)
//{
// unsigned int l;
// unsigned long ret;
// unsigned int size = fifo->mask + 1;
// unsigned int esize = fifo->esize;
//
// off &= fifo->mask;
// if (esize != 1) {
// off *= esize;
// size *= esize;
// len *= esize;
// }
// l = min(len, size - off);
//
// ret = copy_to_user(to, fifo->data + off, l);
// if (unlikely(ret))
// ret = DIV_ROUND_UP(ret + len - l, esize);
// else {
// ret = copy_to_user(to + l, fifo->data, len - l);
// if (unlikely(ret))
// ret = DIV_ROUND_UP(ret, esize);
// }
// /*
// * make sure that the data is copied before
// * incrementing the fifo->out index counter
// */
// smp_wmb();
// *copied = len - ret * esize;
// /* return the number of elements which are not copied */
// return ret;
//}
//
//int __kfifo_to_user(struct __kfifo* fifo, void __user* to,
// unsigned long len, unsigned int* copied)
//{
// unsigned int l;
// unsigned long ret;
// unsigned int esize = fifo->esize;
// int err;
//
// if (esize != 1)
// len /= esize;
//
// l = fifo->in - fifo->out;
// if (len > l)
// len = l;
// ret = kfifo_copy_to_user(fifo, to, len, fifo->out, copied);
// if (unlikely(ret)) {
// len -= ret;
// err = -EFAULT;
// }
// else
// err = 0;
// fifo->out += len;
// return err;
//}
//EXPORT_SYMBOL(__kfifo_to_user);
//
//static int setup_sgl_buf(struct scatterlist* sgl, void* buf,
// int nents, unsigned int len)
//{
// int n;
// unsigned int l;
// unsigned int off;
// struct page* page;
//
// if (!nents)
// return 0;
//
// if (!len)
// return 0;
//
// n = 0;
// page = virt_to_page(buf);
// off = offset_in_page(buf);
// l = 0;
//
// while (len >= l + PAGE_SIZE - off) {
// struct page* npage;
//
// l += PAGE_SIZE;
// buf += PAGE_SIZE;
// npage = virt_to_page(buf);
// if (page_to_phys(page) != page_to_phys(npage) - l) {
// sg_set_page(sgl, page, l - off, off);
// sgl = sg_next(sgl);
// if (++n == nents || sgl == NULL)
// return n;
// page = npage;
// len -= l - off;
// l = off = 0;
// }
// }
// sg_set_page(sgl, page, len, off);
// return n + 1;
//}
//
//static unsigned int setup_sgl(struct __kfifo* fifo, struct scatterlist* sgl,
// int nents, unsigned int len, unsigned int off)
//{
// unsigned int size = fifo->mask + 1;
// unsigned int esize = fifo->esize;
// unsigned int l;
// unsigned int n;
//
// off &= fifo->mask;
// if (esize != 1) {
// off *= esize;
// size *= esize;
// len *= esize;
// }
// l = min(len, size - off);
//
// n = setup_sgl_buf(sgl, fifo->data + off, nents, l);
// n += setup_sgl_buf(sgl + n, fifo->data, nents - n, len - l);
//
// return n;
//}
//
//unsigned int __kfifo_dma_in_prepare(struct __kfifo* fifo,
// struct scatterlist* sgl, int nents, unsigned int len)
//{
// unsigned int l;
//
// l = kfifo_unused(fifo);
// if (len > l)
// len = l;
//
// return setup_sgl(fifo, sgl, nents, len, fifo->in);
//}
//EXPORT_SYMBOL(__kfifo_dma_in_prepare);
//
//unsigned int __kfifo_dma_out_prepare(struct __kfifo* fifo,
// struct scatterlist* sgl, int nents, unsigned int len)
//{
// unsigned int l;
//
// l = fifo->in - fifo->out;
// if (len > l)
// len = l;
//
// return setup_sgl(fifo, sgl, nents, len, fifo->out);
//}
//EXPORT_SYMBOL(__kfifo_dma_out_prepare);
//
//unsigned int __kfifo_max_r(unsigned int len, size_t recsize)
//{
// unsigned int max = (1 << (recsize << 3)) - 1;
//
// if (len > max)
// return max;
// return len;
//}
//EXPORT_SYMBOL(__kfifo_max_r);
//
//#define __KFIFO_PEEK(data, out, mask) \
// ((data)[(out) & (mask)])
///*
// * __kfifo_peek_n internal helper function for determinate the length of
// * the next record in the fifo
// */
//static unsigned int __kfifo_peek_n(struct __kfifo* fifo, size_t recsize)
//{
// unsigned int l;
// unsigned int mask = fifo->mask;
// unsigned char* data = fifo->data;
//
// l = __KFIFO_PEEK(data, fifo->out, mask);
//
// if (--recsize)
// l |= __KFIFO_PEEK(data, fifo->out + 1, mask) << 8;
//
// return l;
//}
//
//#define __KFIFO_POKE(data, in, mask, val) \
// ( \
// (data)[(in) & (mask)] = (unsigned char)(val) \
// )
//
///*
// * __kfifo_poke_n internal helper function for storing the length of
// * the record into the fifo
// */
//static void __kfifo_poke_n(struct __kfifo* fifo, unsigned int n, size_t recsize)
//{
// unsigned int mask = fifo->mask;
// unsigned char* data = fifo->data;
//
// __KFIFO_POKE(data, fifo->in, mask, n);
//
// if (recsize > 1)
// __KFIFO_POKE(data, fifo->in + 1, mask, n >> 8);
//}
//
//unsigned int __kfifo_len_r(struct __kfifo* fifo, size_t recsize)
//{
// return __kfifo_peek_n(fifo, recsize);
//}
//EXPORT_SYMBOL(__kfifo_len_r);
//
//unsigned int __kfifo_in_r(struct __kfifo* fifo, const void* buf,
// unsigned int len, size_t recsize)
//{
// if (len + recsize > kfifo_unused(fifo))
// return 0;
//
// __kfifo_poke_n(fifo, len, recsize);
//
// kfifo_copy_in(fifo, buf, len, fifo->in + recsize);
// fifo->in += len + recsize;
// return len;
//}
//EXPORT_SYMBOL(__kfifo_in_r);
//
//static unsigned int kfifo_out_copy_r(struct __kfifo* fifo,
// void* buf, unsigned int len, size_t recsize, unsigned int* n)
//{
// *n = __kfifo_peek_n(fifo, recsize);
//
// if (len > *n)
// len = *n;
//
// kfifo_copy_out(fifo, buf, len, fifo->out + recsize);
// return len;
//}
//
//unsigned int __kfifo_out_peek_r(struct __kfifo* fifo, void* buf,
// unsigned int len, size_t recsize)
//{
// unsigned int n;
//
// if (fifo->in == fifo->out)
// return 0;
//
// return kfifo_out_copy_r(fifo, buf, len, recsize, &n);
//}
//EXPORT_SYMBOL(__kfifo_out_peek_r);
//
//unsigned int __kfifo_out_r(struct __kfifo* fifo, void* buf,
// unsigned int len, size_t recsize)
//{
// unsigned int n;
//
// if (fifo->in == fifo->out)
// return 0;
//
// len = kfifo_out_copy_r(fifo, buf, len, recsize, &n);
// fifo->out += n + recsize;
// return len;
//}
//EXPORT_SYMBOL(__kfifo_out_r);
//
//void __kfifo_skip_r(struct __kfifo* fifo, size_t recsize)
//{
// unsigned int n;
//
// n = __kfifo_peek_n(fifo, recsize);
// fifo->out += n + recsize;
//}
//EXPORT_SYMBOL(__kfifo_skip_r);
//
//int __kfifo_from_user_r(struct __kfifo* fifo, const void __user* from,
// unsigned long len, unsigned int* copied, size_t recsize)
//{
// unsigned long ret;
//
// len = __kfifo_max_r(len, recsize);
//
// if (len + recsize > kfifo_unused(fifo)) {
// *copied = 0;
// return 0;
// }
//
// __kfifo_poke_n(fifo, len, recsize);
//
// ret = kfifo_copy_from_user(fifo, from, len, fifo->in + recsize, copied);
// if (unlikely(ret)) {
// *copied = 0;
// return -EFAULT;
// }
// fifo->in += len + recsize;
// return 0;
//}
//EXPORT_SYMBOL(__kfifo_from_user_r);
//
//int __kfifo_to_user_r(struct __kfifo* fifo, void __user* to,
// unsigned long len, unsigned int* copied, size_t recsize)
//{
// unsigned long ret;
// unsigned int n;
//
// if (fifo->in == fifo->out) {
// *copied = 0;
// return 0;
// }
//
// n = __kfifo_peek_n(fifo, recsize);
// if (len > n)
// len = n;
//
// ret = kfifo_copy_to_user(fifo, to, len, fifo->out + recsize, copied);
// if (unlikely(ret)) {
// *copied = 0;
// return -EFAULT;
// }
// fifo->out += n + recsize;
// return 0;
//}
//EXPORT_SYMBOL(__kfifo_to_user_r);
//
//unsigned int __kfifo_dma_in_prepare_r(struct __kfifo* fifo,
// struct scatterlist* sgl, int nents, unsigned int len, size_t recsize)
//{
// BUG_ON(!nents);
//
// len = __kfifo_max_r(len, recsize);
//
// if (len + recsize > kfifo_unused(fifo))
// return 0;
//
// return setup_sgl(fifo, sgl, nents, len, fifo->in + recsize);
//}
//EXPORT_SYMBOL(__kfifo_dma_in_prepare_r);
//
//void __kfifo_dma_in_finish_r(struct __kfifo* fifo,
// unsigned int len, size_t recsize)
//{
// len = __kfifo_max_r(len, recsize);
// __kfifo_poke_n(fifo, len, recsize);
// fifo->in += len + recsize;
//}
//EXPORT_SYMBOL(__kfifo_dma_in_finish_r);
//
//unsigned int __kfifo_dma_out_prepare_r(struct __kfifo* fifo,
// struct scatterlist* sgl, int nents, unsigned int len, size_t recsize)
//{
// BUG_ON(!nents);
//
// len = __kfifo_max_r(len, recsize);
//
// if (len + recsize > fifo->in - fifo->out)
// return 0;
//
// return setup_sgl(fifo, sgl, nents, len, fifo->out + recsize);
//}
//EXPORT_SYMBOL(__kfifo_dma_out_prepare_r);
//
//void __kfifo_dma_out_finish_r(struct __kfifo* fifo, size_t recsize)
//{
// unsigned int len;
//
// len = __kfifo_peek_n(fifo, recsize);
// fifo->out += len + recsize;
//}
//EXPORT_SYMBOL(__kfifo_dma_out_finish_r);
#endif
#endif // _BKFIFO_H_