#ifndef _KFIFO_H_ #define _KFIFO_H_ struct _kfifo_ { unsigned int in; unsigned int out; unsigned int mask; unsigned int esize; void* data; }; #define _SRTUCT_KFIFO_COMMON_(datatype, recsize, ptrtype) \ union { \ struct _kfifo_ kfifo; \ } #define _SRTUCT_KFIFO_(type, size, recsize, ptrtype) \ { \ _STRUCT_KFIFO_COMMON_(type, recsize, ptrtype); \ type buf[((size < 2) || (size & (size - 1))) ? -1 : size]; \ } /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * A generic kernel FIFO implementation * * Copyright (C) 2013 Stefani Seibold */ #ifndef _LINUX_KFIFO_H #define _LINUX_KFIFO_H /* * How to porting drivers to the new generic FIFO API: * * - Modify the declaration of the "struct kfifo *" object into a * in-place "struct kfifo" object * - Init the in-place object with kfifo_alloc() or kfifo_init() * Note: The address of the in-place "struct kfifo" object must be * passed as the first argument to this functions * - Replace the use of __kfifo_put into kfifo_in and __kfifo_get * into kfifo_out * - Replace the use of kfifo_put into kfifo_in_spinlocked and kfifo_get * into kfifo_out_spinlocked * Note: the spinlock pointer formerly passed to kfifo_init/kfifo_alloc * must be passed now to the kfifo_in_spinlocked and kfifo_out_spinlocked * as the last parameter * - The formerly __kfifo_* functions are renamed into kfifo_* */ /* * Note about locking: There is no locking required until only one reader * and one writer is using the fifo and no kfifo_reset() will be called. * kfifo_reset_out() can be safely used, until it will be only called * in the reader thread. * For multiple writer and one reader there is only a need to lock the writer. * And vice versa for only one writer and multiple reader there is only a need * to lock the reader. */ struct __kfifo { unsigned int in; unsigned int out; unsigned int mask; unsigned int esize; void* data; }; #define __STRUCT_KFIFO_COMMON(datatype, recsize, ptrtype) \ union { \ struct __kfifo kfifo; \ datatype *type; \ const datatype *const_type; \ char (*rectype)[recsize]; \ ptrtype *ptr; \ ptrtype const *ptr_const; \ } #define __STRUCT_KFIFO(type, size, recsize, ptrtype) \ { \ __STRUCT_KFIFO_COMMON(type, recsize, ptrtype); \ type buf[((size < 2) || (size & (size - 1))) ? -1 : size]; \ } #define STRUCT_KFIFO(type, size) \ struct __STRUCT_KFIFO(type, size, 0, type) #define __STRUCT_KFIFO_PTR(type, recsize, ptrtype) \ { \ __STRUCT_KFIFO_COMMON(type, recsize, ptrtype); \ type buf[0]; \ } #define STRUCT_KFIFO_PTR(type) \ struct __STRUCT_KFIFO_PTR(type, 0, type) /* * define compatibility "struct kfifo" for dynamic allocated fifos */ struct kfifo __STRUCT_KFIFO_PTR(unsigned char, 0, void); #define STRUCT_KFIFO_REC_1(size) \ struct __STRUCT_KFIFO(unsigned char, size, 1, void) #define STRUCT_KFIFO_REC_2(size) \ struct __STRUCT_KFIFO(unsigned char, size, 2, void) /* * define kfifo_rec types */ struct kfifo_rec_ptr_1 __STRUCT_KFIFO_PTR(unsigned char, 1, void); struct kfifo_rec_ptr_2 __STRUCT_KFIFO_PTR(unsigned char, 2, void); /* * helper macro to distinguish between real in place fifo where the fifo * array is a part of the structure and the fifo type where the array is * outside of the fifo structure. */ #define __is_kfifo_ptr(fifo) \ (sizeof(*fifo) == sizeof(STRUCT_KFIFO_PTR(typeof(*(fifo)->type)))) /** * DECLARE_KFIFO_PTR - macro to declare a fifo pointer object * @fifo: name of the declared fifo * @type: type of the fifo elements */ #define DECLARE_KFIFO_PTR(fifo, type) STRUCT_KFIFO_PTR(type) fifo /** * DECLARE_KFIFO - macro to declare a fifo object * @fifo: name of the declared fifo * @type: type of the fifo elements * @size: the number of elements in the fifo, this must be a power of 2 */ #define DECLARE_KFIFO(fifo, type, size) STRUCT_KFIFO(type, size) fifo /** * INIT_KFIFO - Initialize a fifo declared by DECLARE_KFIFO * @fifo: name of the declared fifo datatype */ #define INIT_KFIFO(fifo) \ (void)({ \ typeof(&(fifo)) __tmp = &(fifo); \ struct __kfifo *__kfifo = &__tmp->kfifo; \ __kfifo->in = 0; \ __kfifo->out = 0; \ __kfifo->mask = __is_kfifo_ptr(__tmp) ? 0 : ARRAY_SIZE(__tmp->buf) - 1;\ __kfifo->esize = sizeof(*__tmp->buf); \ __kfifo->data = __is_kfifo_ptr(__tmp) ? NULL : __tmp->buf; \ }) /** * DEFINE_KFIFO - macro to define and initialize a fifo * @fifo: name of the declared fifo datatype * @type: type of the fifo elements * @size: the number of elements in the fifo, this must be a power of 2 * * Note: the macro can be used for global and local fifo data type variables. */ #define DEFINE_KFIFO(fifo, type, size) \ DECLARE_KFIFO(fifo, type, size) = \ (typeof(fifo)) { \ { \ { \ .in = 0, \ .out = 0, \ .mask = __is_kfifo_ptr(&(fifo)) ? \ 0 : \ ARRAY_SIZE((fifo).buf) - 1, \ .esize = sizeof(*(fifo).buf), \ .data = __is_kfifo_ptr(&(fifo)) ? \ NULL : \ (fifo).buf, \ } \ } \ } //static inline unsigned int __must_check //__kfifo_uint_must_check_helper(unsigned int val) //{ // return val; //} // //static inline int __must_check //__kfifo_int_must_check_helper(int val) //{ // return val; //} /** * kfifo_initialized - Check if the fifo is initialized * @fifo: address of the fifo to check * * Return %true if fifo is initialized, otherwise %false. * Assumes the fifo was 0 before. */ #define kfifo_initialized(fifo) ((fifo)->kfifo.mask) /** * kfifo_esize - returns the size of the element managed by the fifo * @fifo: address of the fifo to be used */ #define kfifo_esize(fifo) ((fifo)->kfifo.esize) /** * kfifo_recsize - returns the size of the record length field * @fifo: address of the fifo to be used */ #define kfifo_recsize(fifo) (sizeof(*(fifo)->rectype)) /** * kfifo_size - returns the size of the fifo in elements * @fifo: address of the fifo to be used */ #define kfifo_size(fifo) ((fifo)->kfifo.mask + 1) /** * kfifo_reset - removes the entire fifo content * @fifo: address of the fifo to be used * * Note: usage of kfifo_reset() is dangerous. It should be only called when the * fifo is exclusived locked or when it is secured that no other thread is * accessing the fifo. */ #define kfifo_reset(fifo) \ (void)({ \ typeof((fifo) + 1) __tmp = (fifo); \ __tmp->kfifo.in = __tmp->kfifo.out = 0; \ }) /** * kfifo_reset_out - skip fifo content * @fifo: address of the fifo to be used * * Note: The usage of kfifo_reset_out() is safe until it will be only called * from the reader thread and there is only one concurrent reader. Otherwise * it is dangerous and must be handled in the same way as kfifo_reset(). */ #define kfifo_reset_out(fifo) \ (void)({ \ typeof((fifo) + 1) __tmp = (fifo); \ __tmp->kfifo.out = __tmp->kfifo.in; \ }) /** * kfifo_len - returns the number of used elements in the fifo * @fifo: address of the fifo to be used */ #define kfifo_len(fifo) \ ({ \ typeof((fifo) + 1) __tmpl = (fifo); \ __tmpl->kfifo.in - __tmpl->kfifo.out; \ }) /** * kfifo_is_empty - returns true if the fifo is empty * @fifo: address of the fifo to be used */ #define kfifo_is_empty(fifo) \ ({ \ typeof((fifo) + 1) __tmpq = (fifo); \ __tmpq->kfifo.in == __tmpq->kfifo.out; \ }) /** * kfifo_is_empty_spinlocked - returns true if the fifo is empty using * a spinlock for locking * @fifo: address of the fifo to be used * @lock: spinlock to be used for locking */ #define kfifo_is_empty_spinlocked(fifo, lock) \ ({ \ unsigned long __flags; \ bool __ret; \ spin_lock_irqsave(lock, __flags); \ __ret = kfifo_is_empty(fifo); \ spin_unlock_irqrestore(lock, __flags); \ __ret; \ }) /** * kfifo_is_empty_spinlocked_noirqsave - returns true if the fifo is empty * using a spinlock for locking, doesn't disable interrupts * @fifo: address of the fifo to be used * @lock: spinlock to be used for locking */ #define kfifo_is_empty_spinlocked_noirqsave(fifo, lock) \ ({ \ bool __ret; \ spin_lock(lock); \ __ret = kfifo_is_empty(fifo); \ spin_unlock(lock); \ __ret; \ }) /** * kfifo_is_full - returns true if the fifo is full * @fifo: address of the fifo to be used */ #define kfifo_is_full(fifo) \ ({ \ typeof((fifo) + 1) __tmpq = (fifo); \ kfifo_len(__tmpq) > __tmpq->kfifo.mask; \ }) /** * kfifo_avail - returns the number of unused elements in the fifo * @fifo: address of the fifo to be used */ #define kfifo_avail(fifo) \ __kfifo_uint_must_check_helper( \ ({ \ typeof((fifo) + 1) __tmpq = (fifo); \ const size_t __recsize = sizeof(*__tmpq->rectype); \ unsigned int __avail = kfifo_size(__tmpq) - kfifo_len(__tmpq); \ (__recsize) ? ((__avail <= __recsize) ? 0 : \ __kfifo_max_r(__avail - __recsize, __recsize)) : \ __avail; \ }) \ ) /** * kfifo_skip - skip output data * @fifo: address of the fifo to be used */ #define kfifo_skip(fifo) \ (void)({ \ typeof((fifo) + 1) __tmp = (fifo); \ const size_t __recsize = sizeof(*__tmp->rectype); \ struct __kfifo *__kfifo = &__tmp->kfifo; \ if (__recsize) \ __kfifo_skip_r(__kfifo, __recsize); \ else \ __kfifo->out++; \ }) /** * kfifo_peek_len - gets the size of the next fifo record * @fifo: address of the fifo to be used * * This function returns the size of the next fifo record in number of bytes. */ #define kfifo_peek_len(fifo) \ __kfifo_uint_must_check_helper( \ ({ \ typeof((fifo) + 1) __tmp = (fifo); \ const size_t __recsize = sizeof(*__tmp->rectype); \ struct __kfifo *__kfifo = &__tmp->kfifo; \ (!__recsize) ? kfifo_len(__tmp) * sizeof(*__tmp->type) : \ __kfifo_len_r(__kfifo, __recsize); \ }) \ ) /** * kfifo_alloc - dynamically allocates a new fifo buffer * @fifo: pointer to the fifo * @size: the number of elements in the fifo, this must be a power of 2 * @gfp_mask: get_free_pages mask, passed to kmalloc() * * This macro dynamically allocates a new fifo buffer. * * The number of elements will be rounded-up to a power of 2. * The fifo will be release with kfifo_free(). * Return 0 if no error, otherwise an error code. */ #define kfifo_alloc(fifo, size, gfp_mask) \ __kfifo_int_must_check_helper( \ ({ \ typeof((fifo) + 1) __tmp = (fifo); \ struct __kfifo *__kfifo = &__tmp->kfifo; \ __is_kfifo_ptr(__tmp) ? \ __kfifo_alloc(__kfifo, size, sizeof(*__tmp->type), gfp_mask) : \ -EINVAL; \ }) \ ) /** * kfifo_free - frees the fifo * @fifo: the fifo to be freed */ #define kfifo_free(fifo) \ ({ \ typeof((fifo) + 1) __tmp = (fifo); \ struct __kfifo *__kfifo = &__tmp->kfifo; \ if (__is_kfifo_ptr(__tmp)) \ __kfifo_free(__kfifo); \ }) /** * kfifo_init - initialize a fifo using a preallocated buffer * @fifo: the fifo to assign the buffer * @buffer: the preallocated buffer to be used * @size: the size of the internal buffer, this have to be a power of 2 * * This macro initializes a fifo using a preallocated buffer. * * The number of elements will be rounded-up to a power of 2. * Return 0 if no error, otherwise an error code. */ #define kfifo_init(fifo, buffer, size) \ ({ \ typeof((fifo) + 1) __tmp = (fifo); \ struct __kfifo *__kfifo = &__tmp->kfifo; \ __is_kfifo_ptr(__tmp) ? \ __kfifo_init(__kfifo, buffer, size, sizeof(*__tmp->type)) : \ -EINVAL; \ }) /** * kfifo_put - put data into the fifo * @fifo: address of the fifo to be used * @val: the data to be added * * This macro copies the given value into the fifo. * It returns 0 if the fifo was full. Otherwise it returns the number * processed elements. * * Note that with only one concurrent reader and one concurrent * writer, you don't need extra locking to use these macro. */ #define kfifo_put(fifo, val) \ ({ \ typeof((fifo) + 1) __tmp = (fifo); \ typeof(*__tmp->const_type) __val = (val); \ unsigned int __ret; \ size_t __recsize = sizeof(*__tmp->rectype); \ struct __kfifo *__kfifo = &__tmp->kfifo; \ if (__recsize) \ __ret = __kfifo_in_r(__kfifo, &__val, sizeof(__val), \ __recsize); \ else { \ __ret = !kfifo_is_full(__tmp); \ if (__ret) { \ (__is_kfifo_ptr(__tmp) ? \ ((typeof(__tmp->type))__kfifo->data) : \ (__tmp->buf) \ )[__kfifo->in & __tmp->kfifo.mask] = \ *(typeof(__tmp->type))&__val; \ smp_wmb(); \ __kfifo->in++; \ } \ } \ __ret; \ }) /** * kfifo_get - get data from the fifo * @fifo: address of the fifo to be used * @val: address where to store the data * * This macro reads the data from the fifo. * It returns 0 if the fifo was empty. Otherwise it returns the number * processed elements. * * Note that with only one concurrent reader and one concurrent * writer, you don't need extra locking to use these macro. */ #define kfifo_get(fifo, val) \ __kfifo_uint_must_check_helper( \ ({ \ typeof((fifo) + 1) __tmp = (fifo); \ typeof(__tmp->ptr) __val = (val); \ unsigned int __ret; \ const size_t __recsize = sizeof(*__tmp->rectype); \ struct __kfifo *__kfifo = &__tmp->kfifo; \ if (__recsize) \ __ret = __kfifo_out_r(__kfifo, __val, sizeof(*__val), \ __recsize); \ else { \ __ret = !kfifo_is_empty(__tmp); \ if (__ret) { \ *(typeof(__tmp->type))__val = \ (__is_kfifo_ptr(__tmp) ? \ ((typeof(__tmp->type))__kfifo->data) : \ (__tmp->buf) \ )[__kfifo->out & __tmp->kfifo.mask]; \ smp_wmb(); \ __kfifo->out++; \ } \ } \ __ret; \ }) \ ) /** * kfifo_peek - get data from the fifo without removing * @fifo: address of the fifo to be used * @val: address where to store the data * * This reads the data from the fifo without removing it from the fifo. * It returns 0 if the fifo was empty. Otherwise it returns the number * processed elements. * * Note that with only one concurrent reader and one concurrent * writer, you don't need extra locking to use these macro. */ #define kfifo_peek(fifo, val) \ __kfifo_uint_must_check_helper( \ ({ \ typeof((fifo) + 1) __tmp = (fifo); \ typeof(__tmp->ptr) __val = (val); \ unsigned int __ret; \ const size_t __recsize = sizeof(*__tmp->rectype); \ struct __kfifo *__kfifo = &__tmp->kfifo; \ if (__recsize) \ __ret = __kfifo_out_peek_r(__kfifo, __val, sizeof(*__val), \ __recsize); \ else { \ __ret = !kfifo_is_empty(__tmp); \ if (__ret) { \ *(typeof(__tmp->type))__val = \ (__is_kfifo_ptr(__tmp) ? \ ((typeof(__tmp->type))__kfifo->data) : \ (__tmp->buf) \ )[__kfifo->out & __tmp->kfifo.mask]; \ smp_wmb(); \ } \ } \ __ret; \ }) \ ) /** * kfifo_in - put data into the fifo * @fifo: address of the fifo to be used * @buf: the data to be added * @n: number of elements to be added * * This macro copies the given buffer into the fifo and returns the * number of copied elements. * * Note that with only one concurrent reader and one concurrent * writer, you don't need extra locking to use these macro. */ #define kfifo_in(fifo, buf, n) \ ({ \ typeof((fifo) + 1) __tmp = (fifo); \ typeof(__tmp->ptr_const) __buf = (buf); \ unsigned long __n = (n); \ const size_t __recsize = sizeof(*__tmp->rectype); \ struct __kfifo *__kfifo = &__tmp->kfifo; \ (__recsize) ?\ __kfifo_in_r(__kfifo, __buf, __n, __recsize) : \ __kfifo_in(__kfifo, __buf, __n); \ }) /** * kfifo_in_spinlocked - put data into the fifo using a spinlock for locking * @fifo: address of the fifo to be used * @buf: the data to be added * @n: number of elements to be added * @lock: pointer to the spinlock to use for locking * * This macro copies the given values buffer into the fifo and returns the * number of copied elements. */ #define kfifo_in_spinlocked(fifo, buf, n, lock) \ ({ \ unsigned long __flags; \ unsigned int __ret; \ spin_lock_irqsave(lock, __flags); \ __ret = kfifo_in(fifo, buf, n); \ spin_unlock_irqrestore(lock, __flags); \ __ret; \ }) /** * kfifo_in_spinlocked_noirqsave - put data into fifo using a spinlock for * locking, don't disable interrupts * @fifo: address of the fifo to be used * @buf: the data to be added * @n: number of elements to be added * @lock: pointer to the spinlock to use for locking * * This is a variant of kfifo_in_spinlocked() but uses spin_lock/unlock() * for locking and doesn't disable interrupts. */ #define kfifo_in_spinlocked_noirqsave(fifo, buf, n, lock) \ ({ \ unsigned int __ret; \ spin_lock(lock); \ __ret = kfifo_in(fifo, buf, n); \ spin_unlock(lock); \ __ret; \ }) /* alias for kfifo_in_spinlocked, will be removed in a future release */ #define kfifo_in_locked(fifo, buf, n, lock) \ kfifo_in_spinlocked(fifo, buf, n, lock) /** * kfifo_out - get data from the fifo * @fifo: address of the fifo to be used * @buf: pointer to the storage buffer * @n: max. number of elements to get * * This macro get some data from the fifo and return the numbers of elements * copied. * * Note that with only one concurrent reader and one concurrent * writer, you don't need extra locking to use these macro. */ #define kfifo_out(fifo, buf, n) \ __kfifo_uint_must_check_helper( \ ({ \ typeof((fifo) + 1) __tmp = (fifo); \ typeof(__tmp->ptr) __buf = (buf); \ unsigned long __n = (n); \ const size_t __recsize = sizeof(*__tmp->rectype); \ struct __kfifo *__kfifo = &__tmp->kfifo; \ (__recsize) ?\ __kfifo_out_r(__kfifo, __buf, __n, __recsize) : \ __kfifo_out(__kfifo, __buf, __n); \ }) \ ) /** * kfifo_out_spinlocked - get data from the fifo using a spinlock for locking * @fifo: address of the fifo to be used * @buf: pointer to the storage buffer * @n: max. number of elements to get * @lock: pointer to the spinlock to use for locking * * This macro get the data from the fifo and return the numbers of elements * copied. */ #define kfifo_out_spinlocked(fifo, buf, n, lock) \ __kfifo_uint_must_check_helper( \ ({ \ unsigned long __flags; \ unsigned int __ret; \ spin_lock_irqsave(lock, __flags); \ __ret = kfifo_out(fifo, buf, n); \ spin_unlock_irqrestore(lock, __flags); \ __ret; \ }) \ ) /** * kfifo_out_spinlocked_noirqsave - get data from the fifo using a spinlock * for locking, don't disable interrupts * @fifo: address of the fifo to be used * @buf: pointer to the storage buffer * @n: max. number of elements to get * @lock: pointer to the spinlock to use for locking * * This is a variant of kfifo_out_spinlocked() which uses spin_lock/unlock() * for locking and doesn't disable interrupts. */ #define kfifo_out_spinlocked_noirqsave(fifo, buf, n, lock) \ __kfifo_uint_must_check_helper( \ ({ \ unsigned int __ret; \ spin_lock(lock); \ __ret = kfifo_out(fifo, buf, n); \ spin_unlock(lock); \ __ret; \ }) \ ) /* alias for kfifo_out_spinlocked, will be removed in a future release */ #define kfifo_out_locked(fifo, buf, n, lock) \ kfifo_out_spinlocked(fifo, buf, n, lock) /** * kfifo_from_user - puts some data from user space into the fifo * @fifo: address of the fifo to be used * @from: pointer to the data to be added * @len: the length of the data to be added * @copied: pointer to output variable to store the number of copied bytes * * This macro copies at most @len bytes from the @from into the * fifo, depending of the available space and returns -EFAULT/0. * * Note that with only one concurrent reader and one concurrent * writer, you don't need extra locking to use these macro. */ #define kfifo_from_user(fifo, from, len, copied) \ __kfifo_uint_must_check_helper( \ ({ \ typeof((fifo) + 1) __tmp = (fifo); \ const void __user *__from = (from); \ unsigned int __len = (len); \ unsigned int *__copied = (copied); \ const size_t __recsize = sizeof(*__tmp->rectype); \ struct __kfifo *__kfifo = &__tmp->kfifo; \ (__recsize) ? \ __kfifo_from_user_r(__kfifo, __from, __len, __copied, __recsize) : \ __kfifo_from_user(__kfifo, __from, __len, __copied); \ }) \ ) /** * kfifo_to_user - copies data from the fifo into user space * @fifo: address of the fifo to be used * @to: where the data must be copied * @len: the size of the destination buffer * @copied: pointer to output variable to store the number of copied bytes * * This macro copies at most @len bytes from the fifo into the * @to buffer and returns -EFAULT/0. * * Note that with only one concurrent reader and one concurrent * writer, you don't need extra locking to use these macro. */ #define kfifo_to_user(fifo, to, len, copied) \ __kfifo_int_must_check_helper( \ ({ \ typeof((fifo) + 1) __tmp = (fifo); \ void __user *__to = (to); \ unsigned int __len = (len); \ unsigned int *__copied = (copied); \ const size_t __recsize = sizeof(*__tmp->rectype); \ struct __kfifo *__kfifo = &__tmp->kfifo; \ (__recsize) ? \ __kfifo_to_user_r(__kfifo, __to, __len, __copied, __recsize) : \ __kfifo_to_user(__kfifo, __to, __len, __copied); \ }) \ ) /** * kfifo_dma_in_prepare - setup a scatterlist for DMA input * @fifo: address of the fifo to be used * @sgl: pointer to the scatterlist array * @nents: number of entries in the scatterlist array * @len: number of elements to transfer * * This macro fills a scatterlist for DMA input. * It returns the number entries in the scatterlist array. * * Note that with only one concurrent reader and one concurrent * writer, you don't need extra locking to use these macros. */ #define kfifo_dma_in_prepare(fifo, sgl, nents, len) \ ({ \ typeof((fifo) + 1) __tmp = (fifo); \ struct scatterlist *__sgl = (sgl); \ int __nents = (nents); \ unsigned int __len = (len); \ const size_t __recsize = sizeof(*__tmp->rectype); \ struct __kfifo *__kfifo = &__tmp->kfifo; \ (__recsize) ? \ __kfifo_dma_in_prepare_r(__kfifo, __sgl, __nents, __len, __recsize) : \ __kfifo_dma_in_prepare(__kfifo, __sgl, __nents, __len); \ }) /** * kfifo_dma_in_finish - finish a DMA IN operation * @fifo: address of the fifo to be used * @len: number of bytes to received * * This macro finish a DMA IN operation. The in counter will be updated by * the len parameter. No error checking will be done. * * Note that with only one concurrent reader and one concurrent * writer, you don't need extra locking to use these macros. */ #define kfifo_dma_in_finish(fifo, len) \ (void)({ \ typeof((fifo) + 1) __tmp = (fifo); \ unsigned int __len = (len); \ const size_t __recsize = sizeof(*__tmp->rectype); \ struct __kfifo *__kfifo = &__tmp->kfifo; \ if (__recsize) \ __kfifo_dma_in_finish_r(__kfifo, __len, __recsize); \ else \ __kfifo->in += __len / sizeof(*__tmp->type); \ }) /** * kfifo_dma_out_prepare - setup a scatterlist for DMA output * @fifo: address of the fifo to be used * @sgl: pointer to the scatterlist array * @nents: number of entries in the scatterlist array * @len: number of elements to transfer * * This macro fills a scatterlist for DMA output which at most @len bytes * to transfer. * It returns the number entries in the scatterlist array. * A zero means there is no space available and the scatterlist is not filled. * * Note that with only one concurrent reader and one concurrent * writer, you don't need extra locking to use these macros. */ #define kfifo_dma_out_prepare(fifo, sgl, nents, len) \ ({ \ typeof((fifo) + 1) __tmp = (fifo); \ struct scatterlist *__sgl = (sgl); \ int __nents = (nents); \ unsigned int __len = (len); \ const size_t __recsize = sizeof(*__tmp->rectype); \ struct __kfifo *__kfifo = &__tmp->kfifo; \ (__recsize) ? \ __kfifo_dma_out_prepare_r(__kfifo, __sgl, __nents, __len, __recsize) : \ __kfifo_dma_out_prepare(__kfifo, __sgl, __nents, __len); \ }) /** * kfifo_dma_out_finish - finish a DMA OUT operation * @fifo: address of the fifo to be used * @len: number of bytes transferred * * This macro finish a DMA OUT operation. The out counter will be updated by * the len parameter. No error checking will be done. * * Note that with only one concurrent reader and one concurrent * writer, you don't need extra locking to use these macros. */ #define kfifo_dma_out_finish(fifo, len) \ (void)({ \ typeof((fifo) + 1) __tmp = (fifo); \ unsigned int __len = (len); \ const size_t __recsize = sizeof(*__tmp->rectype); \ struct __kfifo *__kfifo = &__tmp->kfifo; \ if (__recsize) \ __kfifo_dma_out_finish_r(__kfifo, __recsize); \ else \ __kfifo->out += __len / sizeof(*__tmp->type); \ }) /** * kfifo_out_peek - gets some data from the fifo * @fifo: address of the fifo to be used * @buf: pointer to the storage buffer * @n: max. number of elements to get * * This macro get the data from the fifo and return the numbers of elements * copied. The data is not removed from the fifo. * * Note that with only one concurrent reader and one concurrent * writer, you don't need extra locking to use these macro. */ #define kfifo_out_peek(fifo, buf, n) \ __kfifo_uint_must_check_helper( \ ({ \ typeof((fifo) + 1) __tmp = (fifo); \ typeof(__tmp->ptr) __buf = (buf); \ unsigned long __n = (n); \ const size_t __recsize = sizeof(*__tmp->rectype); \ struct __kfifo *__kfifo = &__tmp->kfifo; \ (__recsize) ? \ __kfifo_out_peek_r(__kfifo, __buf, __n, __recsize) : \ __kfifo_out_peek(__kfifo, __buf, __n); \ }) \ ) //extern int __kfifo_alloc(struct __kfifo* fifo, unsigned int size, // size_t esize, gfp_t gfp_mask); // //extern void __kfifo_free(struct __kfifo* fifo); // //extern int __kfifo_init(struct __kfifo* fifo, void* buffer, // unsigned int size, size_t esize); // //extern unsigned int __kfifo_in(struct __kfifo* fifo, // const void* buf, unsigned int len); // //extern unsigned int __kfifo_out(struct __kfifo* fifo, // void* buf, unsigned int len); // //extern int __kfifo_from_user(struct __kfifo* fifo, // const void __user* from, unsigned long len, unsigned int* copied); // //extern int __kfifo_to_user(struct __kfifo* fifo, // void __user* to, unsigned long len, unsigned int* copied); // //extern unsigned int __kfifo_dma_in_prepare(struct __kfifo* fifo, // struct scatterlist* sgl, int nents, unsigned int len); // //extern unsigned int __kfifo_dma_out_prepare(struct __kfifo* fifo, // struct scatterlist* sgl, int nents, unsigned int len); // //extern unsigned int __kfifo_out_peek(struct __kfifo* fifo, // void* buf, unsigned int len); // //extern unsigned int __kfifo_in_r(struct __kfifo* fifo, // const void* buf, unsigned int len, size_t recsize); // //extern unsigned int __kfifo_out_r(struct __kfifo* fifo, // void* buf, unsigned int len, size_t recsize); // //extern int __kfifo_from_user_r(struct __kfifo* fifo, // const void __user* from, unsigned long len, unsigned int* copied, // size_t recsize); // //extern int __kfifo_to_user_r(struct __kfifo* fifo, void __user* to, // unsigned long len, unsigned int* copied, size_t recsize); // //extern unsigned int __kfifo_dma_in_prepare_r(struct __kfifo* fifo, // struct scatterlist* sgl, int nents, unsigned int len, size_t recsize); // //extern void __kfifo_dma_in_finish_r(struct __kfifo* fifo, // unsigned int len, size_t recsize); // //extern unsigned int __kfifo_dma_out_prepare_r(struct __kfifo* fifo, // struct scatterlist* sgl, int nents, unsigned int len, size_t recsize); // //extern void __kfifo_dma_out_finish_r(struct __kfifo* fifo, size_t recsize); // //extern unsigned int __kfifo_len_r(struct __kfifo* fifo, size_t recsize); // //extern void __kfifo_skip_r(struct __kfifo* fifo, size_t recsize); // //extern unsigned int __kfifo_out_peek_r(struct __kfifo* fifo, // void* buf, unsigned int len, size_t recsize); // //extern unsigned int __kfifo_max_r(unsigned int len, size_t recsize); // SPDX-License-Identifier: GPL-2.0-or-later /* * A generic kernel FIFO implementation * * Copyright (C) 2009/2010 Stefani Seibold */ //#include //#include //#include //#include //#include //#include //#include // /* // * internal helper to calculate the unused elements in a fifo // */ //static inline unsigned int kfifo_unused(struct __kfifo* fifo) //{ // return (fifo->mask + 1) - (fifo->in - fifo->out); //} // //int __kfifo_alloc(struct __kfifo* fifo, unsigned int size, // size_t esize, gfp_t gfp_mask) //{ // /* // * round up to the next power of 2, since our 'let the indices // * wrap' technique works only in this case. // */ // size = roundup_pow_of_two(size); // // fifo->in = 0; // fifo->out = 0; // fifo->esize = esize; // // if (size < 2) { // fifo->data = NULL; // fifo->mask = 0; // return -EINVAL; // } // // fifo->data = kmalloc_array(esize, size, gfp_mask); // // if (!fifo->data) { // fifo->mask = 0; // return -ENOMEM; // } // fifo->mask = size - 1; // // return 0; //} //EXPORT_SYMBOL(__kfifo_alloc); // //void __kfifo_free(struct __kfifo* fifo) //{ // kfree(fifo->data); // fifo->in = 0; // fifo->out = 0; // fifo->esize = 0; // fifo->data = NULL; // fifo->mask = 0; //} //EXPORT_SYMBOL(__kfifo_free); // //int __kfifo_init(struct __kfifo* fifo, void* buffer, // unsigned int size, size_t esize) //{ // size /= esize; // // if (!is_power_of_2(size)) // size = rounddown_pow_of_two(size); // // fifo->in = 0; // fifo->out = 0; // fifo->esize = esize; // fifo->data = buffer; // // if (size < 2) { // fifo->mask = 0; // return -EINVAL; // } // fifo->mask = size - 1; // // return 0; //} //EXPORT_SYMBOL(__kfifo_init); // //static void kfifo_copy_in(struct __kfifo* fifo, const void* src, // unsigned int len, unsigned int off) //{ // unsigned int size = fifo->mask + 1; // unsigned int esize = fifo->esize; // unsigned int l; // // off &= fifo->mask; // if (esize != 1) { // off *= esize; // size *= esize; // len *= esize; // } // l = min(len, size - off); // // memcpy(fifo->data + off, src, l); // memcpy(fifo->data, src + l, len - l); // /* // * make sure that the data in the fifo is up to date before // * incrementing the fifo->in index counter // */ // smp_wmb(); //} // //unsigned int __kfifo_in(struct __kfifo* fifo, // const void* buf, unsigned int len) //{ // unsigned int l; // // l = kfifo_unused(fifo); // if (len > l) // len = l; // // kfifo_copy_in(fifo, buf, len, fifo->in); // fifo->in += len; // return len; //} //EXPORT_SYMBOL(__kfifo_in); // //static void kfifo_copy_out(struct __kfifo* fifo, void* dst, // unsigned int len, unsigned int off) //{ // unsigned int size = fifo->mask + 1; // unsigned int esize = fifo->esize; // unsigned int l; // // off &= fifo->mask; // if (esize != 1) { // off *= esize; // size *= esize; // len *= esize; // } // l = min(len, size - off); // // memcpy(dst, fifo->data + off, l); // memcpy(dst + l, fifo->data, len - l); // /* // * make sure that the data is copied before // * incrementing the fifo->out index counter // */ // smp_wmb(); //} // //unsigned int __kfifo_out_peek(struct __kfifo* fifo, // void* buf, unsigned int len) //{ // unsigned int l; // // l = fifo->in - fifo->out; // if (len > l) // len = l; // // kfifo_copy_out(fifo, buf, len, fifo->out); // return len; //} //EXPORT_SYMBOL(__kfifo_out_peek); // //unsigned int __kfifo_out(struct __kfifo* fifo, // void* buf, unsigned int len) //{ // len = __kfifo_out_peek(fifo, buf, len); // fifo->out += len; // return len; //} //EXPORT_SYMBOL(__kfifo_out); // //static unsigned long kfifo_copy_from_user(struct __kfifo* fifo, // const void __user* from, unsigned int len, unsigned int off, // unsigned int* copied) //{ // unsigned int size = fifo->mask + 1; // unsigned int esize = fifo->esize; // unsigned int l; // unsigned long ret; // // off &= fifo->mask; // if (esize != 1) { // off *= esize; // size *= esize; // len *= esize; // } // l = min(len, size - off); // // ret = copy_from_user(fifo->data + off, from, l); // if (unlikely(ret)) // ret = DIV_ROUND_UP(ret + len - l, esize); // else { // ret = copy_from_user(fifo->data, from + l, len - l); // if (unlikely(ret)) // ret = DIV_ROUND_UP(ret, esize); // } // /* // * make sure that the data in the fifo is up to date before // * incrementing the fifo->in index counter // */ // smp_wmb(); // *copied = len - ret * esize; // /* return the number of elements which are not copied */ // return ret; //} // //int __kfifo_from_user(struct __kfifo* fifo, const void __user* from, // unsigned long len, unsigned int* copied) //{ // unsigned int l; // unsigned long ret; // unsigned int esize = fifo->esize; // int err; // // if (esize != 1) // len /= esize; // // l = kfifo_unused(fifo); // if (len > l) // len = l; // // ret = kfifo_copy_from_user(fifo, from, len, fifo->in, copied); // if (unlikely(ret)) { // len -= ret; // err = -EFAULT; // } // else // err = 0; // fifo->in += len; // return err; //} //EXPORT_SYMBOL(__kfifo_from_user); // //static unsigned long kfifo_copy_to_user(struct __kfifo* fifo, void __user* to, // unsigned int len, unsigned int off, unsigned int* copied) //{ // unsigned int l; // unsigned long ret; // unsigned int size = fifo->mask + 1; // unsigned int esize = fifo->esize; // // off &= fifo->mask; // if (esize != 1) { // off *= esize; // size *= esize; // len *= esize; // } // l = min(len, size - off); // // ret = copy_to_user(to, fifo->data + off, l); // if (unlikely(ret)) // ret = DIV_ROUND_UP(ret + len - l, esize); // else { // ret = copy_to_user(to + l, fifo->data, len - l); // if (unlikely(ret)) // ret = DIV_ROUND_UP(ret, esize); // } // /* // * make sure that the data is copied before // * incrementing the fifo->out index counter // */ // smp_wmb(); // *copied = len - ret * esize; // /* return the number of elements which are not copied */ // return ret; //} // //int __kfifo_to_user(struct __kfifo* fifo, void __user* to, // unsigned long len, unsigned int* copied) //{ // unsigned int l; // unsigned long ret; // unsigned int esize = fifo->esize; // int err; // // if (esize != 1) // len /= esize; // // l = fifo->in - fifo->out; // if (len > l) // len = l; // ret = kfifo_copy_to_user(fifo, to, len, fifo->out, copied); // if (unlikely(ret)) { // len -= ret; // err = -EFAULT; // } // else // err = 0; // fifo->out += len; // return err; //} //EXPORT_SYMBOL(__kfifo_to_user); // //static int setup_sgl_buf(struct scatterlist* sgl, void* buf, // int nents, unsigned int len) //{ // int n; // unsigned int l; // unsigned int off; // struct page* page; // // if (!nents) // return 0; // // if (!len) // return 0; // // n = 0; // page = virt_to_page(buf); // off = offset_in_page(buf); // l = 0; // // while (len >= l + PAGE_SIZE - off) { // struct page* npage; // // l += PAGE_SIZE; // buf += PAGE_SIZE; // npage = virt_to_page(buf); // if (page_to_phys(page) != page_to_phys(npage) - l) { // sg_set_page(sgl, page, l - off, off); // sgl = sg_next(sgl); // if (++n == nents || sgl == NULL) // return n; // page = npage; // len -= l - off; // l = off = 0; // } // } // sg_set_page(sgl, page, len, off); // return n + 1; //} // //static unsigned int setup_sgl(struct __kfifo* fifo, struct scatterlist* sgl, // int nents, unsigned int len, unsigned int off) //{ // unsigned int size = fifo->mask + 1; // unsigned int esize = fifo->esize; // unsigned int l; // unsigned int n; // // off &= fifo->mask; // if (esize != 1) { // off *= esize; // size *= esize; // len *= esize; // } // l = min(len, size - off); // // n = setup_sgl_buf(sgl, fifo->data + off, nents, l); // n += setup_sgl_buf(sgl + n, fifo->data, nents - n, len - l); // // return n; //} // //unsigned int __kfifo_dma_in_prepare(struct __kfifo* fifo, // struct scatterlist* sgl, int nents, unsigned int len) //{ // unsigned int l; // // l = kfifo_unused(fifo); // if (len > l) // len = l; // // return setup_sgl(fifo, sgl, nents, len, fifo->in); //} //EXPORT_SYMBOL(__kfifo_dma_in_prepare); // //unsigned int __kfifo_dma_out_prepare(struct __kfifo* fifo, // struct scatterlist* sgl, int nents, unsigned int len) //{ // unsigned int l; // // l = fifo->in - fifo->out; // if (len > l) // len = l; // // return setup_sgl(fifo, sgl, nents, len, fifo->out); //} //EXPORT_SYMBOL(__kfifo_dma_out_prepare); // //unsigned int __kfifo_max_r(unsigned int len, size_t recsize) //{ // unsigned int max = (1 << (recsize << 3)) - 1; // // if (len > max) // return max; // return len; //} //EXPORT_SYMBOL(__kfifo_max_r); // //#define __KFIFO_PEEK(data, out, mask) \ // ((data)[(out) & (mask)]) ///* // * __kfifo_peek_n internal helper function for determinate the length of // * the next record in the fifo // */ //static unsigned int __kfifo_peek_n(struct __kfifo* fifo, size_t recsize) //{ // unsigned int l; // unsigned int mask = fifo->mask; // unsigned char* data = fifo->data; // // l = __KFIFO_PEEK(data, fifo->out, mask); // // if (--recsize) // l |= __KFIFO_PEEK(data, fifo->out + 1, mask) << 8; // // return l; //} // //#define __KFIFO_POKE(data, in, mask, val) \ // ( \ // (data)[(in) & (mask)] = (unsigned char)(val) \ // ) // ///* // * __kfifo_poke_n internal helper function for storing the length of // * the record into the fifo // */ //static void __kfifo_poke_n(struct __kfifo* fifo, unsigned int n, size_t recsize) //{ // unsigned int mask = fifo->mask; // unsigned char* data = fifo->data; // // __KFIFO_POKE(data, fifo->in, mask, n); // // if (recsize > 1) // __KFIFO_POKE(data, fifo->in + 1, mask, n >> 8); //} // //unsigned int __kfifo_len_r(struct __kfifo* fifo, size_t recsize) //{ // return __kfifo_peek_n(fifo, recsize); //} //EXPORT_SYMBOL(__kfifo_len_r); // //unsigned int __kfifo_in_r(struct __kfifo* fifo, const void* buf, // unsigned int len, size_t recsize) //{ // if (len + recsize > kfifo_unused(fifo)) // return 0; // // __kfifo_poke_n(fifo, len, recsize); // // kfifo_copy_in(fifo, buf, len, fifo->in + recsize); // fifo->in += len + recsize; // return len; //} //EXPORT_SYMBOL(__kfifo_in_r); // //static unsigned int kfifo_out_copy_r(struct __kfifo* fifo, // void* buf, unsigned int len, size_t recsize, unsigned int* n) //{ // *n = __kfifo_peek_n(fifo, recsize); // // if (len > *n) // len = *n; // // kfifo_copy_out(fifo, buf, len, fifo->out + recsize); // return len; //} // //unsigned int __kfifo_out_peek_r(struct __kfifo* fifo, void* buf, // unsigned int len, size_t recsize) //{ // unsigned int n; // // if (fifo->in == fifo->out) // return 0; // // return kfifo_out_copy_r(fifo, buf, len, recsize, &n); //} //EXPORT_SYMBOL(__kfifo_out_peek_r); // //unsigned int __kfifo_out_r(struct __kfifo* fifo, void* buf, // unsigned int len, size_t recsize) //{ // unsigned int n; // // if (fifo->in == fifo->out) // return 0; // // len = kfifo_out_copy_r(fifo, buf, len, recsize, &n); // fifo->out += n + recsize; // return len; //} //EXPORT_SYMBOL(__kfifo_out_r); // //void __kfifo_skip_r(struct __kfifo* fifo, size_t recsize) //{ // unsigned int n; // // n = __kfifo_peek_n(fifo, recsize); // fifo->out += n + recsize; //} //EXPORT_SYMBOL(__kfifo_skip_r); // //int __kfifo_from_user_r(struct __kfifo* fifo, const void __user* from, // unsigned long len, unsigned int* copied, size_t recsize) //{ // unsigned long ret; // // len = __kfifo_max_r(len, recsize); // // if (len + recsize > kfifo_unused(fifo)) { // *copied = 0; // return 0; // } // // __kfifo_poke_n(fifo, len, recsize); // // ret = kfifo_copy_from_user(fifo, from, len, fifo->in + recsize, copied); // if (unlikely(ret)) { // *copied = 0; // return -EFAULT; // } // fifo->in += len + recsize; // return 0; //} //EXPORT_SYMBOL(__kfifo_from_user_r); // //int __kfifo_to_user_r(struct __kfifo* fifo, void __user* to, // unsigned long len, unsigned int* copied, size_t recsize) //{ // unsigned long ret; // unsigned int n; // // if (fifo->in == fifo->out) { // *copied = 0; // return 0; // } // // n = __kfifo_peek_n(fifo, recsize); // if (len > n) // len = n; // // ret = kfifo_copy_to_user(fifo, to, len, fifo->out + recsize, copied); // if (unlikely(ret)) { // *copied = 0; // return -EFAULT; // } // fifo->out += n + recsize; // return 0; //} //EXPORT_SYMBOL(__kfifo_to_user_r); // //unsigned int __kfifo_dma_in_prepare_r(struct __kfifo* fifo, // struct scatterlist* sgl, int nents, unsigned int len, size_t recsize) //{ // BUG_ON(!nents); // // len = __kfifo_max_r(len, recsize); // // if (len + recsize > kfifo_unused(fifo)) // return 0; // // return setup_sgl(fifo, sgl, nents, len, fifo->in + recsize); //} //EXPORT_SYMBOL(__kfifo_dma_in_prepare_r); // //void __kfifo_dma_in_finish_r(struct __kfifo* fifo, // unsigned int len, size_t recsize) //{ // len = __kfifo_max_r(len, recsize); // __kfifo_poke_n(fifo, len, recsize); // fifo->in += len + recsize; //} //EXPORT_SYMBOL(__kfifo_dma_in_finish_r); // //unsigned int __kfifo_dma_out_prepare_r(struct __kfifo* fifo, // struct scatterlist* sgl, int nents, unsigned int len, size_t recsize) //{ // BUG_ON(!nents); // // len = __kfifo_max_r(len, recsize); // // if (len + recsize > fifo->in - fifo->out) // return 0; // // return setup_sgl(fifo, sgl, nents, len, fifo->out + recsize); //} //EXPORT_SYMBOL(__kfifo_dma_out_prepare_r); // //void __kfifo_dma_out_finish_r(struct __kfifo* fifo, size_t recsize) //{ // unsigned int len; // // len = __kfifo_peek_n(fifo, recsize); // fifo->out += len + recsize; //} //EXPORT_SYMBOL(__kfifo_dma_out_finish_r); #endif #endif // _KFIFO_H_