lab 4+5 makefile update

This commit is contained in:
kenctrl 2025-03-11 13:59:26 -04:00
parent 3d190166fd
commit fc8b51698c
18 changed files with 2352 additions and 20 deletions

View File

@ -46,12 +46,10 @@ REFERENCE_FILES=(
src/kvraft1/kvraft_test.go
src/kvraft1/test.go
# lab 5a
# src/shardkv1/test.go
# lab 5b
# src/shardkv1/shardkv_test.go
# src/shardkv1/shardcfg/shardcfg_test.go
# lab 5
src/shardkv1/test.go
src/shardkv1/shardkv_test.go
src/shardkv1/shardcfg/shardcfg_test.go
)
main() {
@ -79,8 +77,7 @@ main() {
"lab2") check_lab2;;
"lab3a"|"lab3b"|"lab3c"|"lab3d") check_lab3;;
"lab4a"|"lab4b"|"lab4c") check_lab4;;
"lab5a") check_lab5a;;
"lab5b") check_lab5b;;
"lab5a"|"lab5b"|"lab5c") check_lab5;;
*) die "unknown lab: $labnum";;
esac
@ -117,18 +114,11 @@ check_lab4() {
check_cmd go test -c
}
check_lab5a() {
# check_cmd cd src/shardctrler1
# check_cmd go test -c
}
check_lab5b() {
# check_cmd cd src/shardkv1
# check_cmd go test -c
check_lab5() {
check_cmd cd src/shardkv1
check_cmd go test -c
# also check other labs/parts
cd "$tmpdir"
check_lab5a
cd "$tmpdir"
check_lab4
cd "$tmpdir"
check_lab3

View File

@ -1,8 +1,8 @@
# This is the Makefile helping you submit the labs.
# Submit your lab with the following command:
# $ make [lab1|lab2|lab3a|lab3b|lab3c|lab3d|lab4a|lab4b|lab4c|lab5a|lab5b]
# $ make [lab1|lab2|lab3a|lab3b|lab3c|lab3d|lab4a|lab4b|lab4c|lab5a|lab5b|lab5c]
LABS=" lab1 lab2 lab3a lab3b lab3c lab3d lab4a lab4b lab4c lab5a lab5b "
LABS=" lab1 lab2 lab3a lab3b lab3c lab3d lab4a lab4b lab4c lab5a lab5b lab5c "
%: check-%
@echo "Preparing $@-handin.tar.gz"

51
src/shardkv1/client.go Normal file
View File

@ -0,0 +1,51 @@
package shardkv
//
// client code to talk to a sharded key/value service.
//
// the client uses the shardctrler to query for the current
// configuration and find the assignment of shards (keys) to groups,
// and then talks to the group that holds the key's shard.
//
import (
"6.5840/kvsrv1/rpc"
"6.5840/kvtest1"
"6.5840/shardkv1/shardctrler"
"6.5840/tester1"
)
type Clerk struct {
clnt *tester.Clnt
sck *shardctrler.ShardCtrler
// You will have to modify this struct.
}
// The tester calls MakeClerk and passes in a shardctrler so that
// client can call it's Query method
func MakeClerk(clnt *tester.Clnt, sck *shardctrler.ShardCtrler) kvtest.IKVClerk {
ck := &Clerk{
clnt: clnt,
sck: sck,
}
// You'll have to add code here.
return ck
}
// Get a key from a shardgrp. You can use shardcfg.Key2Shard(key) to
// find the shard responsible for the key and ck.sck.Query() to read
// the current configuration and lookup the servers in the group
// responsible for key. You can make a clerk for that group by
// calling shardgrp.MakeClerk(ck.clnt, servers).
func (ck *Clerk) Get(key string) (string, rpc.Tversion, rpc.Err) {
// You will have to modify this function.
return "", 0, ""
}
// Put a key to a shard group.
func (ck *Clerk) Put(key string, value string, version rpc.Tversion) rpc.Err {
// You will have to modify this function.
return ""
}

View File

@ -0,0 +1,56 @@
package kvsrv
import (
"6.5840/kvsrv1/rpc"
"6.5840/kvtest1"
"6.5840/tester1"
)
type Clerk struct {
clnt *tester.Clnt
server string
}
func MakeClerk(clnt *tester.Clnt, server string) kvtest.IKVClerk {
ck := &Clerk{clnt: clnt, server: server}
// You may add code here.
return ck
}
// Get fetches the current value and version for a key. It returns
// ErrNoKey if the key does not exist. It keeps trying forever in the
// face of all other errors.
//
// You can send an RPC with code like this:
// ok := ck.clnt.Call(ck.server, "KVServer.Get", &args, &reply)
//
// The types of args and reply (including whether they are pointers)
// must match the declared types of the RPC handler function's
// arguments. Additionally, reply must be passed as a pointer.
func (ck *Clerk) Get(key string) (string, rpc.Tversion, rpc.Err) {
// You will have to modify this function.
return "", 0, rpc.ErrNoKey
}
// Put updates key with value only if the version in the
// request matches the version of the key at the server. If the
// versions numbers don't match, the server should return
// ErrVersion. If Put receives an ErrVersion on its first RPC, Put
// should return ErrVersion, since the Put was definitely not
// performed at the server. If the server returns ErrVersion on a
// resend RPC, then Put must return ErrMaybe to the application, since
// its earlier RPC might have been processed by the server successfully
// but the response was lost, and the the Clerk doesn't know if
// the Put was performed or not.
//
// You can send an RPC with code like this:
// ok := ck.clnt.Call(ck.server, "KVServer.Put", &args, &reply)
//
// The types of args and reply (including whether they are pointers)
// must match the declared types of the RPC handler function's
// arguments. Additionally, reply must be passed as a pointer.
func (ck *Clerk) Put(key, value string, version rpc.Tversion) rpc.Err {
// You will have to modify this function.
return rpc.ErrNoKey
}

View File

@ -0,0 +1,162 @@
package kvsrv
import (
// "log"
"runtime"
"testing"
"time"
"6.5840/kvsrv1/rpc"
"6.5840/kvtest1"
)
// Test Put with a single client and a reliable network
func TestReliablePut(t *testing.T) {
const Val = "6.5840"
const Ver = 0
ts := MakeTestKV(t, true)
defer ts.Cleanup()
ts.Begin("One client and reliable Put")
ck := ts.MakeClerk()
if err := ck.Put("k", Val, Ver); err != rpc.OK {
t.Fatalf("Put err %v", err)
}
if val, ver, err := ck.Get("k"); err != rpc.OK {
t.Fatalf("Get err %v; expected OK", err)
} else if val != Val {
t.Fatalf("Get value err %v; expected %v", val, Val)
} else if ver != Ver+1 {
t.Fatalf("Get wrong version %v; expected %v", ver, Ver+1)
}
if err := ck.Put("k", Val, 0); err != rpc.ErrVersion {
t.Fatalf("expected Put to fail with ErrVersion; got err=%v", err)
}
if err := ck.Put("y", Val, rpc.Tversion(1)); err != rpc.ErrNoKey {
t.Fatalf("expected Put to fail with ErrNoKey; got err=%v", err)
}
if _, _, err := ck.Get("y"); err != rpc.ErrNoKey {
t.Fatalf("expected Get to fail with ErrNoKey; got err=%v", err)
}
}
// Many clients putting on same key.
func TestPutConcurrentReliable(t *testing.T) {
const (
PORCUPINETIME = 10 * time.Second
NCLNT = 10
NSEC = 1
)
ts := MakeTestKV(t, true)
defer ts.Cleanup()
ts.Begin("Test: many clients racing to put values to the same key")
rs := ts.SpawnClientsAndWait(NCLNT, NSEC*time.Second, func(me int, ck kvtest.IKVClerk, done chan struct{}) kvtest.ClntRes {
return ts.OneClientPut(me, ck, []string{"k"}, done)
})
ck := ts.MakeClerk()
ts.CheckPutConcurrent(ck, "k", rs, &kvtest.ClntRes{})
ts.CheckPorcupineT(PORCUPINETIME)
}
// Check if memory used on server is reasonable
func TestMemPutManyClientsReliable(t *testing.T) {
const (
NCLIENT = 100_000
MEM = 1000
)
ts := MakeTestKV(t, true)
defer ts.Cleanup()
v := kvtest.RandValue(MEM)
cks := make([]kvtest.IKVClerk, NCLIENT)
for i, _ := range cks {
cks[i] = ts.MakeClerk()
}
// force allocation of ends for server in each client
for i := 0; i < NCLIENT; i++ {
if err := cks[i].Put("k", "", 1); err != rpc.ErrNoKey {
t.Fatalf("Put failed %v", err)
}
}
ts.Begin("Test: memory use many put clients")
// allow threads started by labrpc to start
time.Sleep(1 * time.Second)
runtime.GC()
runtime.GC()
var st runtime.MemStats
runtime.ReadMemStats(&st)
m0 := st.HeapAlloc
for i := 0; i < NCLIENT; i++ {
if err := cks[i].Put("k", v, rpc.Tversion(i)); err != rpc.OK {
t.Fatalf("Put failed %v", err)
}
}
runtime.GC()
time.Sleep(1 * time.Second)
runtime.GC()
runtime.ReadMemStats(&st)
m1 := st.HeapAlloc
f := (float64(m1) - float64(m0)) / NCLIENT
if m1 > m0+(NCLIENT*200) {
t.Fatalf("error: server using too much memory %d %d (%.2f per client)\n", m0, m1, f)
}
}
// Test with one client and unreliable network. If Clerk.Put returns
// ErrMaybe, the Put must have happened, since the test uses only one
// client.
func TestUnreliableNet(t *testing.T) {
const NTRY = 100
ts := MakeTestKV(t, false)
defer ts.Cleanup()
ts.Begin("One client")
ck := ts.MakeClerk()
retried := false
for try := 0; try < NTRY; try++ {
for i := 0; true; i++ {
if err := ts.PutJson(ck, "k", i, rpc.Tversion(try), 0); err != rpc.ErrMaybe {
if i > 0 && err != rpc.ErrVersion {
t.Fatalf("Put shouldn't have happen more than once %v", err)
}
break
}
// Try put again; it should fail with ErrVersion
retried = true
}
v := 0
if ver := ts.GetJson(ck, "k", 0, &v); ver != rpc.Tversion(try+1) {
t.Fatalf("Wrong version %d expect %d", ver, try+1)
}
if v != 0 {
t.Fatalf("Wrong value %d expect %d", v, 0)
}
}
if !retried {
t.Fatalf("Clerk.Put never returned ErrMaybe")
}
ts.CheckPorcupine()
}

View File

@ -0,0 +1,31 @@
package lock
import (
"6.5840/kvsrv1/rpc"
"6.5840/shardkv1/kvsrv1"
"6.5840/shardkv1/shardctrler/param"
)
type Lock struct {
ck *kvsrv.Clerk
}
// Use l as the key to store the "lock state" (you would have to decide
// precisely what the lock state is).
func MakeLock(ck kvtest.IKVClerk, l string) *Lock {
lk := &Lock{ck: ck.(*kvsrv.Clerk)}
// You may add code here
return lk
}
func (lk *Lock) Acquire() {
// You may add code here.
}
func (lk *Lock) Release() {
// You may add code here.
}

View File

@ -0,0 +1,89 @@
package lock
import (
"fmt"
// "log"
"strconv"
"testing"
"time"
"6.5840/kvsrv1"
"6.5840/kvsrv1/rpc"
"6.5840/kvtest1"
)
const (
NACQUIRE = 10
NCLNT = 10
NSEC = 2
)
func oneClient(t *testing.T, me int, ck kvtest.IKVClerk, done chan struct{}) kvtest.ClntRes {
lk := MakeLock(ck, "l")
ck.Put("l0", "", 0)
for i := 1; true; i++ {
select {
case <-done:
return kvtest.ClntRes{i, 0}
default:
lk.Acquire()
// log.Printf("%d: acquired lock", me)
b := strconv.Itoa(me)
val, ver, err := ck.Get("l0")
if err == rpc.OK {
if val != "" {
t.Fatalf("%d: two clients acquired lock %v", me, val)
}
} else {
t.Fatalf("%d: get failed %v", me, err)
}
err = ck.Put("l0", string(b), ver)
if !(err == rpc.OK || err == rpc.ErrMaybe) {
t.Fatalf("%d: put failed %v", me, err)
}
time.Sleep(10 * time.Millisecond)
err = ck.Put("l0", "", ver+1)
if !(err == rpc.OK || err == rpc.ErrMaybe) {
t.Fatalf("%d: put failed %v", me, err)
}
// log.Printf("%d: release lock", me)
lk.Release()
}
}
return kvtest.ClntRes{}
}
// Run test clients
func runClients(t *testing.T, nclnt int, reliable bool) {
ts := kvsrv.MakeTestKV(t, reliable)
defer ts.Cleanup()
ts.Begin(fmt.Sprintf("Test: %d lock clients", nclnt))
ts.SpawnClientsAndWait(nclnt, NSEC*time.Second, func(me int, myck kvtest.IKVClerk, done chan struct{}) kvtest.ClntRes {
return oneClient(t, me, myck, done)
})
}
func TestOneClientReliable(t *testing.T) {
runClients(t, 1, true)
}
func TestManyClientsReliable(t *testing.T) {
runClients(t, NCLNT, true)
}
func TestOneClientUnreliable(t *testing.T) {
runClients(t, 1, false)
}
func TestManyClientsUnreliable(t *testing.T) {
runClients(t, NCLNT, false)
}

View File

@ -0,0 +1,48 @@
package kvsrv
import (
"sync"
"6.5840/kvsrv1/rpc"
"6.5840/labrpc"
"6.5840/tester1"
)
type KVServer struct {
mu sync.Mutex
// Your definitions here.
}
func MakeKVServer() *KVServer {
kv := &KVServer{}
// Your code here.
return kv
}
// Get returns the value and version for args.Key, if args.Key
// exists. Otherwise, Get returns ErrNoKey.
func (kv *KVServer) Get(args *rpc.GetArgs, reply *rpc.GetReply) {
// Your code here.
}
// Update the value for a key if args.Version matches the version of
// the key on the server. If versions don't match, return ErrVersion.
// If the key doesn't exist, Put installs the value if the
// args.Version is 0, and returns ErrNoKey otherwise.
func (kv *KVServer) Put(args *rpc.PutArgs, reply *rpc.PutReply) {
// Your code here.
}
// You can ignore Kill() for this lab
func (kv *KVServer) Kill() {
}
// You can ignore all arguments; they are for replicated KVservers
func StartKVServer(ends []*labrpc.ClientEnd, gid tester.Tgid, srv int, persister *tester.Persister) []tester.IService {
kv := MakeKVServer()
return []tester.IService{kv}
}

View File

@ -0,0 +1,36 @@
package kvsrv
import (
// "log"
"testing"
"6.5840/kvtest1"
"6.5840/tester1"
)
type TestKV struct {
*kvtest.Test
t *testing.T
reliable bool
}
func MakeTestKV(t *testing.T, reliable bool) *TestKV {
cfg := tester.MakeConfig(t, 1, reliable, StartKVServer)
ts := &TestKV{
t: t,
reliable: reliable,
}
ts.Test = kvtest.MakeTest(t, cfg, false, ts)
return ts
}
func (ts *TestKV) MakeClerk() kvtest.IKVClerk {
clnt := ts.Config.MakeClient()
ck := MakeClerk(clnt, tester.ServerName(tester.GRP0, 0))
return &kvtest.TestClerk{ck, clnt}
}
func (ts *TestKV) DeleteClerk(ck kvtest.IKVClerk) {
tck := ck.(*kvtest.TestClerk)
ts.DeleteClient(tck.Clnt)
}

View File

@ -0,0 +1,284 @@
package shardcfg
import (
"encoding/json"
"hash/fnv"
"log"
"runtime/debug"
"slices"
"testing"
"6.5840/tester1"
)
type Tshid int
type Tnum int
const (
NShards = 12 // The number of shards.
NumFirst = Tnum(1)
)
const (
Gid1 = tester.Tgid(1)
)
// which shard is a key in?
// please use this function,
// and please do not change it.
func Key2Shard(key string) Tshid {
h := fnv.New32a()
h.Write([]byte(key))
shard := Tshid(Tshid(h.Sum32()) % NShards)
return shard
}
// A configuration -- an assignment of shards to groups.
// Please don't change this.
type ShardConfig struct {
Num Tnum // config number
Shards [NShards]tester.Tgid // shard -> gid
Groups map[tester.Tgid][]string // gid -> servers[]
}
func MakeShardConfig() *ShardConfig {
c := &ShardConfig{
Groups: make(map[tester.Tgid][]string),
}
return c
}
func (cfg *ShardConfig) String() string {
b, err := json.Marshal(cfg)
if err != nil {
log.Fatalf("Unmarshall err %v", err)
}
return string(b)
}
func FromString(s string) *ShardConfig {
scfg := &ShardConfig{}
if err := json.Unmarshal([]byte(s), scfg); err != nil {
log.Fatalf("Unmarshall err %v", err)
}
return scfg
}
func (cfg *ShardConfig) Copy() *ShardConfig {
c := MakeShardConfig()
c.Num = cfg.Num
c.Shards = cfg.Shards
for k, srvs := range cfg.Groups {
s := make([]string, len(srvs))
copy(s, srvs)
c.Groups[k] = s
}
return c
}
// mostgroup, mostn, leastgroup, leastn
func analyze(c *ShardConfig) (tester.Tgid, int, tester.Tgid, int) {
counts := map[tester.Tgid]int{}
for _, g := range c.Shards {
counts[g] += 1
}
mn := -1
var mg tester.Tgid = -1
ln := 257
var lg tester.Tgid = -1
// Enforce deterministic ordering, map iteration
// is randomized in go
groups := make([]tester.Tgid, len(c.Groups))
i := 0
for k := range c.Groups {
groups[i] = k
i++
}
slices.Sort(groups)
for _, g := range groups {
if counts[g] < ln {
ln = counts[g]
lg = g
}
if counts[g] > mn {
mn = counts[g]
mg = g
}
}
return mg, mn, lg, ln
}
// return GID of group with least number of
// assigned shards.
func least(c *ShardConfig) tester.Tgid {
_, _, lg, _ := analyze(c)
return lg
}
// balance assignment of shards to groups.
// modifies c.
func (c *ShardConfig) Rebalance() {
// if no groups, un-assign all shards
if len(c.Groups) < 1 {
for s, _ := range c.Shards {
c.Shards[s] = 0
}
return
}
// assign all unassigned shards
for s, g := range c.Shards {
_, ok := c.Groups[g]
if ok == false {
lg := least(c)
c.Shards[s] = lg
}
}
// move shards from most to least heavily loaded
for {
mg, mn, lg, ln := analyze(c)
if mn < ln+2 {
break
}
// move 1 shard from mg to lg
for s, g := range c.Shards {
if g == mg {
c.Shards[s] = lg
break
}
}
}
}
func (cfg *ShardConfig) Join(servers map[tester.Tgid][]string) bool {
changed := false
for gid, servers := range servers {
_, ok := cfg.Groups[gid]
if ok {
log.Printf("re-Join %v", gid)
return false
}
for xgid, xservers := range cfg.Groups {
for _, s1 := range xservers {
for _, s2 := range servers {
if s1 == s2 {
log.Fatalf("Join(%v) puts server %v in groups %v and %v", gid, s1, xgid, gid)
}
}
}
}
// new GID
// modify cfg to reflect the Join()
cfg.Groups[gid] = servers
changed = true
}
if changed == false {
log.Fatalf("Join but no change")
}
cfg.Num += 1
return true
}
func (cfg *ShardConfig) Leave(gids []tester.Tgid) bool {
changed := false
for _, gid := range gids {
_, ok := cfg.Groups[gid]
if ok == false {
// already no GID!
log.Printf("Leave(%v) but not in config", gid)
return false
} else {
// modify op.Config to reflect the Leave()
delete(cfg.Groups, gid)
changed = true
}
}
if changed == false {
debug.PrintStack()
log.Fatalf("Leave but no change")
}
cfg.Num += 1
return true
}
func (cfg *ShardConfig) JoinBalance(servers map[tester.Tgid][]string) bool {
if !cfg.Join(servers) {
return false
}
cfg.Rebalance()
return true
}
func (cfg *ShardConfig) LeaveBalance(gids []tester.Tgid) bool {
if !cfg.Leave(gids) {
return false
}
cfg.Rebalance()
return true
}
func (cfg *ShardConfig) GidServers(sh Tshid) (tester.Tgid, []string, bool) {
gid := cfg.Shards[sh]
srvs, ok := cfg.Groups[gid]
return gid, srvs, ok
}
func (cfg *ShardConfig) IsMember(gid tester.Tgid) bool {
for _, g := range cfg.Shards {
if g == gid {
return true
}
}
return false
}
func (cfg *ShardConfig) CheckConfig(t *testing.T, groups []tester.Tgid) {
if len(cfg.Groups) != len(groups) {
fatalf(t, "wanted %v groups, got %v", len(groups), len(cfg.Groups))
}
// are the groups as expected?
for _, g := range groups {
_, ok := cfg.Groups[g]
if ok != true {
fatalf(t, "missing group %v", g)
}
}
// any un-allocated shards?
if len(groups) > 0 {
for s, g := range cfg.Shards {
_, ok := cfg.Groups[g]
if ok == false {
fatalf(t, "shard %v -> invalid group %v", s, g)
}
}
}
// more or less balanced sharding?
counts := map[tester.Tgid]int{}
for _, g := range cfg.Shards {
counts[g] += 1
}
min := 257
max := 0
for g, _ := range cfg.Groups {
if counts[g] > max {
max = counts[g]
}
if counts[g] < min {
min = counts[g]
}
}
if max > min+1 {
fatalf(t, "max %v too much larger than min %v", max, min)
}
}
func fatalf(t *testing.T, format string, args ...any) {
debug.PrintStack()
t.Fatalf(format, args...)
}

View File

@ -0,0 +1,62 @@
package shardcfg
import (
"testing"
"6.5840/tester1"
)
func check_same_config(t *testing.T, c1 ShardConfig, c2 ShardConfig) {
if c1.Num != c2.Num {
t.Fatalf("Num wrong")
}
if c1.Shards != c2.Shards {
t.Fatalf("Shards wrong")
}
if len(c1.Groups) != len(c2.Groups) {
t.Fatalf("number of Groups is wrong")
}
for gid, sa := range c1.Groups {
sa1, ok := c2.Groups[gid]
if ok == false || len(sa1) != len(sa) {
t.Fatalf("len(Groups) wrong")
}
if ok && len(sa1) == len(sa) {
for j := 0; j < len(sa); j++ {
if sa[j] != sa1[j] {
t.Fatalf("Groups wrong")
}
}
}
}
}
func TestBasic(t *testing.T) {
const (
Gid1 = 1
Gid2 = 2
)
cfg := MakeShardConfig()
cfg.CheckConfig(t, []tester.Tgid{})
cfg.JoinBalance(map[tester.Tgid][]string{Gid1: []string{"x", "y", "z"}})
cfg.CheckConfig(t, []tester.Tgid{Gid1})
cfg.JoinBalance(map[tester.Tgid][]string{Gid2: []string{"a", "b", "c"}})
cfg.CheckConfig(t, []tester.Tgid{Gid1, Gid2})
sa1 := cfg.Groups[Gid1]
if len(sa1) != 3 || sa1[0] != "x" || sa1[1] != "y" || sa1[2] != "z" {
t.Fatalf("wrong servers for gid %v: %v\n", Gid1, sa1)
}
sa2 := cfg.Groups[Gid2]
if len(sa2) != 3 || sa2[0] != "a" || sa2[1] != "b" || sa2[2] != "c" {
t.Fatalf("wrong servers for gid %v: %v\n", Gid2, sa2)
}
cfg.LeaveBalance([]tester.Tgid{Gid1})
cfg.CheckConfig(t, []tester.Tgid{Gid2})
cfg.LeaveBalance([]tester.Tgid{Gid2})
cfg.CheckConfig(t, []tester.Tgid{})
}

View File

@ -0,0 +1,7 @@
package param
const (
// Length of time that a lease is valid. If a client doesn't
// refresh the lease within this time, the lease will expire.
LEASETIMESEC = 3
)

View File

@ -0,0 +1,87 @@
package shardctrler
//
// Shardctrler with InitConfig, Query, and ChangeConfigTo methods
//
import (
"sync/atomic"
"6.5840/kvsrv1/rpc"
"6.5840/kvtest1"
"6.5840/shardkv1/kvsrv1"
"6.5840/shardkv1/shardcfg"
"6.5840/tester1"
)
// ShardCtrler for the controller and kv clerk.
type ShardCtrler struct {
clnt *tester.Clnt
kvtest.IKVClerk
killed int32 // set by Kill()
leases bool
// Your data here.
}
// Make a ShardCltler, which stores its state in a kvsrv.
func MakeShardCtrler(clnt *tester.Clnt, leases bool) *ShardCtrler {
sck := &ShardCtrler{clnt: clnt, leases: leases}
srv := tester.ServerName(tester.GRP0, 0)
sck.IKVClerk = kvsrv.MakeClerk(clnt, srv)
// Your code here.
return sck
}
// The tester calls InitController() before starting a new
// controller. In this method you can implement recovery (part B) and
// use a lock to become leader (part C). InitController may fail when
// another controller supersedes (e.g., when this controller is
// partitioned during recovery).
func (sck *ShardCtrler) InitController() rpc.Err {
return rpc.ErrNoKey
}
// The tester calls ExitController to exit a controller. In part B and
// C, release lock.
func (sck *ShardCtrler) ExitController() {
}
// Called once by the tester to supply the first configuration. You
// can marshal ShardConfig into a string using shardcfg.String(), and
// then Put it in the kvsrv for the controller at version 0. You can
// pick the key to name the configuration.
func (sck *ShardCtrler) InitConfig(cfg *shardcfg.ShardConfig) {
// Your code here
}
// Called by the tester to ask the controller to change the
// configuration from the current one to new. It may return an error
// if this controller is disconnected for a while and another
// controller takes over in the mean time, as in part C.
func (sck *ShardCtrler) ChangeConfigTo(new *shardcfg.ShardConfig) rpc.Err {
return rpc.OK
}
// Tester "kills" shardctrler by calling Kill(). For your
// convenience, we also supply isKilled() method to test killed in
// loops.
func (sck *ShardCtrler) Kill() {
atomic.StoreInt32(&sck.killed, 1)
}
func (sck *ShardCtrler) isKilled() bool {
z := atomic.LoadInt32(&sck.killed)
return z == 1
}
// Return the current configuration
func (sck *ShardCtrler) Query() (*shardcfg.ShardConfig, rpc.Tversion) {
// Your code here.
return nil, 0
}

View File

@ -0,0 +1,42 @@
package shardgrp
import (
"6.5840/kvsrv1/rpc"
"6.5840/shardkv1/shardcfg"
"6.5840/tester1"
)
type Clerk struct {
clnt *tester.Clnt
servers []string
leader int // last successful leader (index into servers[])
}
func MakeClerk(clnt *tester.Clnt, servers []string) *Clerk {
ck := &Clerk{clnt: clnt, servers: servers}
return ck
}
func (ck *Clerk) Get(key string, n shardcfg.Tnum) (string, rpc.Tversion, rpc.Err) {
// Your code here
return "", 0, ""
}
func (ck *Clerk) Put(key string, value string, version rpc.Tversion, n shardcfg.Tnum) (bool, rpc.Err) {
// Your code here
return false, ""
}
func (ck *Clerk) Freeze(s shardcfg.Tshid, num shardcfg.Tnum) ([]byte, rpc.Err) {
return nil, ""
}
func (ck *Clerk) InstallShard(s shardcfg.Tshid, state []byte, num shardcfg.Tnum) rpc.Err {
return ""
}
func (ck *Clerk) Delete(s shardcfg.Tshid, num shardcfg.Tnum) rpc.Err {
return ""
}

View File

@ -0,0 +1,102 @@
package shardgrp
import (
"sync/atomic"
"6.5840/kvraft1/rsm"
"6.5840/kvsrv1/rpc"
"6.5840/labgob"
"6.5840/labrpc"
"6.5840/shardkv1/shardgrp/shardrpc"
"6.5840/tester1"
)
type KVServer struct {
gid tester.Tgid
me int
dead int32 // set by Kill()
rsm *rsm.RSM
frozen bool // for testing purposes
}
func (kv *KVServer) DoOp(req any) any {
// Your code here
return nil
}
func (kv *KVServer) Snapshot() []byte {
// Your code here
return nil
}
func (kv *KVServer) Restore(data []byte) {
// Your code here
}
func (kv *KVServer) Get(args *shardrpc.GetArgs, reply *rpc.GetReply) {
// Your code here
}
func (kv *KVServer) Put(args *shardrpc.PutArgs, reply *rpc.PutReply) {
// Your code here
}
// Freeze the specified shard (i.e., reject future Get/Puts for this
// shard) and return the key/values stored in that shard.
func (kv *KVServer) Freeze(args *shardrpc.FreezeArgs, reply *shardrpc.FreezeReply) {
// Your code here
}
// Install the supplied state for the specified shard.
func (kv *KVServer) InstallShard(args *shardrpc.InstallShardArgs, reply *shardrpc.InstallShardReply) {
// Your code here
}
// Delete the specified shard.
func (kv *KVServer) Delete(args *shardrpc.DeleteShardArgs, reply *shardrpc.DeleteShardReply) {
// Your code here
}
// the tester calls Kill() when a KVServer instance won't
// be needed again. for your convenience, we supply
// code to set rf.dead (without needing a lock),
// and a killed() method to test rf.dead in
// long-running loops. you can also add your own
// code to Kill(). you're not required to do anything
// about this, but it may be convenient (for example)
// to suppress debug output from a Kill()ed instance.
func (kv *KVServer) Kill() {
atomic.StoreInt32(&kv.dead, 1)
// Your code here, if desired.
}
func (kv *KVServer) killed() bool {
z := atomic.LoadInt32(&kv.dead)
return z == 1
}
// StartShardServerGrp starts a server for shardgrp `gid`.
//
// StartShardServerGrp() and MakeRSM() must return quickly, so they should
// start goroutines for any long-running work.
func StartServerShardGrp(servers []*labrpc.ClientEnd, gid tester.Tgid, me int, persister *tester.Persister, maxraftstate int) []tester.IService {
// call labgob.Register on structures you want
// Go's RPC library to marshall/unmarshall.
labgob.Register(shardrpc.PutArgs{})
labgob.Register(shardrpc.GetArgs{})
labgob.Register(shardrpc.FreezeArgs{})
labgob.Register(shardrpc.InstallShardArgs{})
labgob.Register(shardrpc.DeleteShardArgs{})
labgob.Register(rsm.Op{})
kv := &KVServer{gid: gid, me: me}
kv.rsm = rsm.MakeRSM(servers, me, persister, maxraftstate, kv)
// Your code here
return []tester.IService{kv, kv.rsm.Raft()}
}

View File

@ -0,0 +1,50 @@
package shardrpc
import (
"6.5840/kvsrv1/rpc"
"6.5840/shardkv1/shardcfg"
)
// Same as Put in kvsrv1/rpc, but with a configuration number
type PutArgs struct {
Key string
Value string
Version rpc.Tversion
Num shardcfg.Tnum
}
// Same as Get in kvsrv1/rpc, but with a configuration number.
type GetArgs struct {
Key string
Num shardcfg.Tnum
}
type FreezeArgs struct {
Shard shardcfg.Tshid
Num shardcfg.Tnum
}
type FreezeReply struct {
State []byte
Num shardcfg.Tnum
Err rpc.Err
}
type InstallShardArgs struct {
Shard shardcfg.Tshid
State []byte
Num shardcfg.Tnum
}
type InstallShardReply struct {
Err rpc.Err
}
type DeleteShardArgs struct {
Shard shardcfg.Tshid
Num shardcfg.Tnum
}
type DeleteShardReply struct {
Err rpc.Err
}

View File

@ -0,0 +1,818 @@
package shardkv
import (
"log"
"testing"
"time"
"6.5840/kvsrv1/rpc"
"6.5840/kvtest1"
"6.5840/shardkv1/shardcfg"
"6.5840/shardkv1/shardctrler"
"6.5840/shardkv1/shardctrler/param"
"6.5840/tester1"
)
const (
NGRP = 8
NKEYS = 5 * shardcfg.NShards
)
// Test shard controller's Init and Query with a key/value server from
// kvsrv1 lab.
func TestInitQuery5A(t *testing.T) {
// MakeTest starts a key/value server using `kvsrv.StartKVServer`,
// which is defined in shardkv1/kvsrv1.
ts := MakeTest(t, "Test (5A): Init and Query ...", true)
defer ts.Cleanup()
// Make a shard controller
sck := shardctrler.MakeShardCtrler(ts.Config.MakeClient(), ts.leases)
// Make an empty shard configuration
scfg := shardcfg.MakeShardConfig()
// Compute a new shard configuration as if `shardcfg.Gid1` joins the cluster,
// assigning all shards to `shardcfg.Gid1`.
scfg.JoinBalance(map[tester.Tgid][]string{shardcfg.Gid1: []string{"xxx"}})
// Invoke the controller to initialize to store the first configuration
sck.InitConfig(scfg)
// Read the initial configuration and check it
cfg, v := sck.Query()
if v != 1 || cfg.Num != 1 || cfg.Shards[0] != shardcfg.Gid1 {
ts.t.Fatalf("Static wrong %v %v", cfg, v)
}
cfg.CheckConfig(t, []tester.Tgid{shardcfg.Gid1})
}
// Test shardkv clerk's Get/Put with 1 shardgrp (without reconfiguration)
func TestStaticOneShardGroup5A(t *testing.T) {
ts := MakeTest(t, "Test (5A): one shard group ...", true)
defer ts.Cleanup()
// The tester's setupKVService() sets up a kvsrv for the
// controller to store configurations and calls the controller's
// Init() method to create the first configuration with 1
// shardgrp.
ts.setupKVService()
ck := ts.MakeClerk() // make a shardkv clerk
ka, va := ts.SpreadPuts(ck, NKEYS) // do some puts
n := len(ka)
for i := 0; i < n; i++ {
ts.CheckGet(ck, ka[i], va[i], rpc.Tversion(1)) // check the puts
}
// disconnect raft leader of shardgrp and check that keys are
// still avaialable
ts.disconnectClntFromLeader(ck.(*kvtest.TestClerk).Clnt, shardcfg.Gid1)
for i := 0; i < n; i++ {
ts.CheckGet(ck, ka[i], va[i], rpc.Tversion(1)) // check the puts
}
}
// test shardctrler's join, which adds a new group Gid2 and must move
// shards to the new group and the old group should reject Get/Puts on
// shards that moved.
func TestJoinBasic5A(t *testing.T) {
ts := MakeTest(t, "Test (5A): a group joins...", true)
defer ts.Cleanup()
gid1 := ts.setupKVService()
ck := ts.MakeClerk()
ka, va := ts.SpreadPuts(ck, NKEYS)
sck := ts.ShardCtrler()
cfg, _ := sck.Query()
gid2 := ts.newGid()
err := ts.joinGroups(sck, []tester.Tgid{gid2})
if err != rpc.OK {
ts.t.Fatalf("joinGroups: err %v", err)
}
cfg1, _ := sck.Query()
if cfg.Num+1 != cfg1.Num {
ts.t.Fatalf("wrong num %d expected %d ", cfg1.Num, cfg.Num+1)
}
if !cfg1.IsMember(gid2) {
ts.t.Fatalf("%d isn't a member of %v", gid2, cfg1)
}
// check shards at shardcfg.Gid2
ts.checkShutdownSharding(gid1, gid2, ka, va)
for i := 0; i < len(ka); i++ {
ts.CheckGet(ck, ka[i], va[i], rpc.Tversion(1))
}
// check shards at shardcfg.Gid1
ts.checkShutdownSharding(gid2, gid1, ka, va)
for i := 0; i < len(ka); i++ {
ts.CheckGet(ck, ka[i], va[i], rpc.Tversion(1))
}
}
// test shardgrps delete moved shards
func TestDeleteBasic5A(t *testing.T) {
const (
MAXRAFTSTATE = 1000
VALUESIZE = 10000
)
ts := MakeTestMaxRaft(t, "Test (5A): delete ...", true, false, VALUESIZE)
defer ts.Cleanup()
gid1 := ts.setupKVService()
ck := ts.MakeClerk()
ka, va := ts.SpreadPutsSize(ck, NKEYS, MAXRAFTSTATE)
sz := ts.Group(gid1).SnapshotSize()
sck := ts.ShardCtrler()
gid2 := ts.newGid()
err := ts.joinGroups(sck, []tester.Tgid{gid2})
if err != rpc.OK {
ts.t.Fatalf("joinGroups: err %v", err)
}
// push more Get's through so that all peers snapshot
for j := 0; j < 5; j++ {
for i := 0; i < len(ka); i++ {
ts.CheckGet(ck, ka[i], va[i], rpc.Tversion(1))
}
}
sz1 := ts.Group(gid1).SnapshotSize()
sz2 := ts.Group(gid2).SnapshotSize()
if sz1+sz2 > sz+10000 {
ts.t.Fatalf("gid1 %d + gid2 %d = %d use too much space %d", sz1, sz2, sz1+sz2, sz)
}
}
// test shardctrler's leave
func TestJoinLeaveBasic5A(t *testing.T) {
ts := MakeTest(t, "Test (5A): basic groups join/leave ...", true)
defer ts.Cleanup()
gid1 := ts.setupKVService()
ck := ts.MakeClerk()
ka, va := ts.SpreadPuts(ck, NKEYS)
sck := ts.ShardCtrler()
gid2 := ts.newGid()
err := ts.joinGroups(sck, []tester.Tgid{gid2})
if err != rpc.OK {
ts.t.Fatalf("joinGroups: err %v", err)
}
// check shards at shardcfg.Gid2
ts.checkShutdownSharding(gid1, gid2, ka, va)
for i := 0; i < len(ka); i++ {
ts.CheckGet(ck, ka[i], va[i], rpc.Tversion(1))
}
err = ts.leave(sck, shardcfg.Gid1)
if err != rpc.OK {
ts.t.Fatalf("Leave: err %v", err)
}
cfg, _ := sck.Query()
if cfg.IsMember(shardcfg.Gid1) {
ts.t.Fatalf("%d is a member of %v", shardcfg.Gid1, cfg)
}
ts.Group(shardcfg.Gid1).Shutdown()
for i := 0; i < len(ka); i++ {
ts.CheckGet(ck, ka[i], va[i], rpc.Tversion(1))
}
// bring the crashed shard/group back to life.
ts.Group(shardcfg.Gid1).StartServers()
// Rejoin
ts.join(sck, shardcfg.Gid1, ts.Group(shardcfg.Gid1).SrvNames())
for i := 0; i < len(ka); i++ {
ts.CheckGet(ck, ka[i], va[i], rpc.Tversion(1))
}
// check shards at shardcfg.Gid2
ts.checkShutdownSharding(gid2, gid1, ka, va)
}
// test many groups joining and leaving, reliable or unreliable
func joinLeave5A(t *testing.T, reliable bool, part string) {
ts := MakeTest(t, "Test (5A): many groups join/leave ...", reliable)
defer ts.Cleanup()
ts.setupKVService()
ck := ts.MakeClerk()
ka, va := ts.SpreadPuts(ck, NKEYS)
sck := ts.ShardCtrler()
grps := ts.groups(NGRP)
ts.joinGroups(sck, grps)
ts.checkShutdownSharding(grps[0], grps[1], ka, va)
for i := 0; i < len(ka); i++ {
ts.CheckGet(ck, ka[i], va[i], rpc.Tversion(1))
}
ts.leaveGroups(sck, grps)
for i := 0; i < len(ka); i++ {
ts.CheckGet(ck, ka[i], va[i], rpc.Tversion(1))
}
}
func TestManyJoinLeaveReliable5A(t *testing.T) {
joinLeave5A(t, true, "Test (5A): many groups join/leave reliable...")
}
func TestManyJoinLeaveUnreliable5A(t *testing.T) {
joinLeave5A(t, false, "Test (5A): many groups join/leave unreliable...")
}
// Test recovery from complete shutdown
func TestShutdown5A(t *testing.T) {
const NJOIN = 2
const NGRP = 2 + NJOIN
ts := MakeTest(t, "Test (5A): shutdown ...", true)
defer ts.Cleanup()
ts.setupKVService()
ck := ts.MakeClerk()
ka, va := ts.SpreadPuts(ck, NKEYS)
sck := ts.ShardCtrler()
grps := ts.groups(NJOIN)
ts.joinGroups(sck, grps)
ts.checkShutdownSharding(grps[0], grps[1], ka, va)
for i := 0; i < len(ka); i++ {
ts.CheckGet(ck, ka[i], va[i], rpc.Tversion(1))
}
for i := shardcfg.Gid1; i < NGRP; i++ {
ts.Group(i).Shutdown()
}
for i := shardcfg.Gid1; i < NGRP; i++ {
ts.Group(i).StartServers()
}
for i := 0; i < len(ka); i++ {
ts.CheckGet(ck, ka[i], va[i], rpc.Tversion(1))
}
}
// Test that Gets for keys at groups that are alive
// return
func TestProgressShutdown(t *testing.T) {
const (
NJOIN = 4
NSEC = 2
)
ts := MakeTest(t, "Test (5A): progress ...", true)
defer ts.Cleanup()
ts.setupKVService()
ck := ts.MakeClerk()
ka, va := ts.SpreadPuts(ck, NKEYS)
sck := ts.ShardCtrler()
grps := ts.groups(NJOIN)
ts.joinGroups(sck, grps)
end := 2
for _, g := range grps[0:2] {
//log.Printf("shutdown %d", g)
ts.Group(g).Shutdown()
}
alive := make(map[tester.Tgid]bool)
for _, g := range grps[end:] {
alive[g] = true
}
cfg, _ := sck.Query()
ch := make(chan rpc.Err)
go func() {
for i := 0; i < len(ka); i++ {
s := shardcfg.Key2Shard(ka[i])
g := cfg.Shards[s]
if _, ok := alive[g]; ok {
//log.Printf("key lookup %v(%d) gid %d", ka[i], s, g)
ts.CheckGet(ck, ka[i], va[i], rpc.Tversion(1))
}
}
ch <- rpc.OK
}()
select {
case <-ch:
case <-time.After(NSEC * time.Second):
ts.Fatalf("Gets didn't finish")
}
}
// Test that Gets from a non-moving shard return quickly
func TestProgressJoin(t *testing.T) {
const (
NJOIN = 4
NSEC = 4
NCNT = 100
)
ts := MakeTest(t, "Test (5A): progress ...", true)
defer ts.Cleanup()
ts.setupKVService()
ck := ts.MakeClerk()
ka, va := ts.SpreadPuts(ck, NKEYS)
sck := ts.ShardCtrler()
grps := ts.groups(NJOIN)
ts.joinGroups(sck, grps)
cfg, _ := sck.Query()
newcfg := cfg.Copy()
newgid := tester.Tgid(NJOIN + 3)
if ok := newcfg.JoinBalance(map[tester.Tgid][]string{newgid: []string{"xxx"}}); !ok {
t.Fatalf("JoinBalance failed")
}
newcfg1 := newcfg.Copy()
if ok := newcfg1.LeaveBalance([]tester.Tgid{newgid}); !ok {
t.Fatalf("JoinBalance failed")
}
// compute which shards don't move and which groups are involved
// in moving shards
stable := make(map[shardcfg.Tshid]bool)
participating := make(map[tester.Tgid]bool)
for i, g := range newcfg1.Shards {
if newcfg.Shards[i] == g {
stable[shardcfg.Tshid(i)] = true
} else {
participating[g] = true
}
}
//log.Printf("groups participating %v stable %v", participating, stable)
//log.Printf("\ncfg %v\n %v\n %v", cfg.Shards, newcfg.Shards, newcfg1.Shards)
ch0 := make(chan rpc.Err)
go func() {
for true {
select {
case <-ch0:
return
default:
//log.Printf("join/leave %v", newgid)
if err := ts.joinGroups(sck, []tester.Tgid{newgid}); err != rpc.OK {
t.Fatalf("joined err %v", err)
}
if err := ts.leaveGroups(sck, []tester.Tgid{newgid}); err != rpc.OK {
t.Fatalf("leave err %v", err)
}
}
}
}()
ch1 := make(chan int)
go func() {
// get the keys that are on groups that are involved in the
// join but not in the shards that are moving
t := time.Now().Add(NSEC * time.Second)
nget := 0
for time.Now().Before(t) {
for i := 0; i < len(ka); i++ {
s := shardcfg.Key2Shard(ka[i])
if _, ok := stable[s]; ok {
g := newcfg1.Shards[s]
if _, ok := participating[g]; ok {
// log.Printf("key lookup %v(%d) gid %d", ka[i], s, g)
ts.CheckGet(ck, ka[i], va[i], rpc.Tversion(1))
nget++
}
}
}
}
ch1 <- nget
}()
select {
case cnt := <-ch1:
log.Printf("cnt %d", cnt)
if cnt < NCNT {
ts.Fatalf("Two few gets finished %d; expected more than %d", cnt, NCNT)
}
case <-time.After(2 * NSEC * time.Second):
ts.Fatalf("Gets didn't finish")
}
ch0 <- rpc.OK
}
// Test linearizability with groups joining/leaving and `nclnt`
// concurrent clerks put/get's in `unreliable` net.
func concurrentClerk(t *testing.T, nclnt int, reliable bool, part string) {
const (
NSEC = 20
)
ts := MakeTest(t, part, reliable)
defer ts.Cleanup()
ts.setupKVService()
ka := kvtest.MakeKeys(NKEYS)
ch := make(chan []kvtest.ClntRes)
go func(ch chan []kvtest.ClntRes) {
rs := ts.SpawnClientsAndWait(nclnt, NSEC*time.Second, func(me int, ck kvtest.IKVClerk, done chan struct{}) kvtest.ClntRes {
return ts.OneClientPut(me, ck, ka, done)
})
ch <- rs
}(ch)
sck := ts.ShardCtrler()
grps := ts.groups(NGRP)
if err := ts.joinGroups(sck, grps); err != rpc.OK {
t.Fatalf("joinGroups err %v", err)
}
if err := ts.leaveGroups(sck, grps); err != rpc.OK {
t.Fatalf("leaveGroups err %v", err)
}
<-ch
ts.CheckPorcupine()
}
// Test linearizability with groups joining/leaving and 1 concurrent clerks put/get's
func TestOneConcurrentClerkReliable5A(t *testing.T) {
concurrentClerk(t, 1, true, "Test (5A): one concurrent clerk reliable...")
}
// Test linearizability with groups joining/leaving and many concurrent clerks put/get's
func TestManyConcurrentClerkReliable5A(t *testing.T) {
const NCLNT = 10
concurrentClerk(t, NCLNT, true, "Test (5A): many concurrent clerks reliable...")
}
// Test linearizability with groups joining/leaving and 1 concurrent clerks put/get's
func TestOneConcurrentClerkUnreliable5A(t *testing.T) {
concurrentClerk(t, 1, false, "Test (5A): one concurrent clerk unreliable ...")
}
// Test linearizability with groups joining/leaving and many concurrent clerks put/get's
func TestManyConcurrentClerkUnreliable5A(t *testing.T) {
const NCLNT = 10
concurrentClerk(t, NCLNT, false, "Test (5A): many concurrent clerks unreliable...")
}
// Test if join/leave complete even if shardgrp is down for a while, but
// don't complete while the shardgrp is down.
func TestJoinLeave5B(t *testing.T) {
const NSEC = 2
ts := MakeTest(t, "Test (5B): Join/leave while a shardgrp is down...", true)
defer ts.Cleanup()
gid1 := ts.setupKVService()
ck := ts.MakeClerk()
ka, va := ts.SpreadPuts(ck, NKEYS)
sck := ts.ShardCtrler()
cfg, _ := sck.Query()
ts.Group(gid1).Shutdown()
gid2 := ts.newGid()
ch := make(chan rpc.Err)
go func() {
err := ts.joinGroups(sck, []tester.Tgid{gid2})
ch <- err
}()
select {
case err := <-ch:
ts.Fatalf("Join finished %v", err)
case <-time.After(1 * NSEC):
// Give Join some time to try to join
}
// Now join should be able to finish
ts.Group(gid1).StartServers()
select {
case err := <-ch:
if err != rpc.OK {
ts.Fatalf("Join returns err %v", err)
}
case <-time.After(time.Second * NSEC):
ts.Fatalf("Join didn't complete")
}
cfg1, _ := sck.Query()
if cfg.Num+1 != cfg1.Num {
ts.t.Fatalf("wrong num %d expected %d ", cfg1.Num, cfg.Num+1)
}
ts.Group(gid2).Shutdown()
ch = make(chan rpc.Err)
go func() {
err := ts.leave(sck, shardcfg.Gid1)
ch <- err
}()
select {
case err := <-ch:
ts.Fatalf("Leave finished %v", err)
case <-time.After(NSEC * time.Second):
// Give give some time to try to join
}
// Now leave should be able to finish
ts.Group(gid2).StartServers()
select {
case err := <-ch:
if err != rpc.OK {
ts.Fatalf("Leave returns err %v", err)
}
case <-time.After(time.Second * NSEC):
ts.Fatalf("Leave didn't complete")
}
for i := 0; i < len(ka); i++ {
ts.CheckGet(ck, ka[i], va[i], rpc.Tversion(1))
}
}
// test recovery of partitioned controlers
func TestRecoverCtrler5B(t *testing.T) {
const (
NPARTITION = 5
)
ts := MakeTest(t, "Test (5B): recover controler ...", true)
defer ts.Cleanup()
gid := ts.setupKVService()
ck := ts.MakeClerk()
ka, va := ts.SpreadPuts(ck, NKEYS)
for i := 0; i < NPARTITION; i++ {
ts.killCtrler(ck, gid, ka, va)
}
}
// Test concurrent ctrlers fighting for leadership reliable
func TestAcquireLockConcurrentReliable5C(t *testing.T) {
ts := MakeTestLeases(t, "Test (5C): Concurent ctrlers acquiring leadership ...", true)
defer ts.Cleanup()
ts.setupKVService()
ck := ts.MakeClerk()
ka, va := ts.SpreadPuts(ck, NKEYS)
ts.electCtrler(ck, ka, va)
}
// Test concurrent ctrlers fighting for leadership unreliable
func TestAcquireLockConcurrentUnreliable5C(t *testing.T) {
ts := MakeTestLeases(t, "Test (5C): Concurent ctrlers acquiring leadership ...", false)
defer ts.Cleanup()
ts.setupKVService()
ck := ts.MakeClerk()
ka, va := ts.SpreadPuts(ck, NKEYS)
ts.electCtrler(ck, ka, va)
}
// Test that ReleaseLock allows a new leader to start quickly
func TestLeaseBasicRelease5C(t *testing.T) {
ts := MakeTestLeases(t, "Test (5C): release lease ...", true)
defer ts.Cleanup()
ts.setupKVService()
sck0, clnt0 := ts.makeShardCtrlerClnt()
go func() {
if err := sck0.InitController(); err != rpc.OK {
t.Fatalf("failed to init controller %v", err)
}
time.Sleep(200 * time.Millisecond)
sck0.ExitController()
}()
time.Sleep(10 * time.Millisecond)
// start new controller
sck1, clnt1 := ts.makeShardCtrlerClnt()
ch := make(chan struct{})
go func() {
if err := sck1.InitController(); err != rpc.OK {
t.Fatalf("failed to init controller %v", err)
}
time.Sleep(200 * time.Millisecond)
sck1.ExitController()
ch <- struct{}{}
}()
select {
case <-time.After(1 * time.Second):
ts.Fatalf("Release didn't give up leadership")
case <-ch:
}
ts.Config.DeleteClient(clnt0)
ts.Config.DeleteClient(clnt1)
}
// Test lease expiring
func TestLeaseBasicExpire5C(t *testing.T) {
ts := MakeTestLeases(t, "Test (5C): lease expiring ...", true)
defer ts.Cleanup()
ts.setupKVService()
sck0, clnt0 := ts.makeShardCtrlerClnt()
go func() {
if err := sck0.InitController(); err != rpc.OK {
t.Fatalf("failed to init controller %v", err)
}
for {
time.Sleep(10 * time.Millisecond)
}
}()
time.Sleep(100 * time.Millisecond)
// partition sck0 forever
clnt0.DisconnectAll()
// start new controller
sck1, clnt1 := ts.makeShardCtrlerClnt()
ch := make(chan struct{})
go func() {
if err := sck1.InitController(); err != rpc.OK {
t.Fatalf("failed to init controller %v", err)
}
time.Sleep(100 * time.Millisecond)
sck1.ExitController()
ch <- struct{}{}
}()
select {
case <-time.After((param.LEASETIMESEC + 1) * time.Second):
ts.Fatalf("Lease didn't expire")
case <-ch:
}
ts.Config.DeleteClient(clnt0)
ts.Config.DeleteClient(clnt1)
}
// Test lease is being extended
func TestLeaseBasicRefresh5C(t *testing.T) {
const LEADERSEC = 3
ts := MakeTestLeases(t, "Test (5C): lease refresh ...", true)
defer ts.Cleanup()
ts.setupKVService()
sck0, clnt0 := ts.makeShardCtrlerClnt()
go func() {
if err := sck0.InitController(); err != rpc.OK {
t.Fatalf("failed to init controller %v", err)
}
time.Sleep(LEADERSEC * param.LEASETIMESEC * time.Second)
sck0.ExitController()
}()
// give sck0 time to become leader
time.Sleep(100 * time.Millisecond)
// start new controller
sck1, clnt1 := ts.makeShardCtrlerClnt()
ch := make(chan struct{})
go func() {
if err := sck1.InitController(); err != rpc.OK {
t.Fatalf("failed to init controller %v", err)
}
time.Sleep(100 * time.Millisecond)
sck1.ExitController()
ch <- struct{}{}
}()
select {
case <-time.After((LEADERSEC + param.LEASETIMESEC + 1) * time.Second):
case <-ch:
ts.Fatalf("Lease not refreshed")
}
ts.Config.DeleteClient(clnt0)
ts.Config.DeleteClient(clnt1)
}
// Test if old leader is fenced off when reconnecting while it is in
// the middle of a Join.
func TestPartitionControlerJoin5C(t *testing.T) {
const (
NSLEEP = 2
RAND = 1000
)
ts := MakeTestLeases(t, "Test (5C): partition controller in join...", true)
defer ts.Cleanup()
ts.setupKVService()
ck := ts.MakeClerk()
ka, va := ts.SpreadPuts(ck, NKEYS)
sck, clnt := ts.makeShardCtrlerClnt()
if err := sck.InitController(); err != rpc.OK {
ts.Fatalf("failed to init controller %v", err)
}
ch := make(chan rpc.Err)
ngid := tester.Tgid(0)
go func() {
ngid = ts.newGid()
ts.Config.MakeGroupStart(ngid, NSRV, ts.StartServerShardGrp)
ts.Group(ngid).Shutdown()
ch <- ts.join(sck, ngid, ts.Group(ngid).SrvNames())
}()
// sleep for a while to get the chance for the controler to get stuck
// in join or leave, because gid is down
time.Sleep(1 * time.Second)
// partition sck
clnt.DisconnectAll()
// wait until sck's lease expired before restarting shardgrp `ngid`
time.Sleep((param.LEASETIMESEC + 1) * time.Second)
ts.Group(ngid).StartServers()
// start new controler to supersede partitioned one,
// it will also be stuck
sck0 := ts.makeShardCtrler()
if err := sck0.InitController(); err != rpc.OK {
t.Fatalf("failed to init controller %v", err)
}
sck0.ExitController()
//log.Printf("reconnect")
// reconnect old controller, which shouldn't be able
// to do anything
clnt.ConnectAll()
err := <-ch
if err == rpc.OK {
t.Fatalf("Old leader succeeded %v", err)
}
time.Sleep(1 * time.Second)
for i := 0; i < len(ka); i++ {
ts.CheckGet(ck, ka[i], va[i], rpc.Tversion(1))
}
}
// Make a leader controller loses its leadership during join/leave and
// test if the next controller recovers correctly.
func TestPartitionRecovery5C(t *testing.T) {
const (
// NPARTITION = 10
NPARTITION = 5
)
ts := MakeTestLeases(t, "Test (5C): controllers with leased leadership ...", true)
defer ts.Cleanup()
gid := ts.setupKVService()
ck := ts.MakeClerk()
ka, va := ts.SpreadPuts(ck, NKEYS)
for i := 0; i < NPARTITION; i++ {
ts.killCtrler(ck, gid, ka, va)
}
}

417
src/shardkv1/test.go Normal file
View File

@ -0,0 +1,417 @@
package shardkv
import (
"fmt"
//"log"
"math/rand"
"sync"
"sync/atomic"
"testing"
"time"
"6.5840/kvraft1/rsm"
"6.5840/kvsrv1/rpc"
"6.5840/kvtest1"
"6.5840/labrpc"
"6.5840/shardkv1/kvsrv1"
"6.5840/shardkv1/shardcfg"
"6.5840/shardkv1/shardctrler"
"6.5840/shardkv1/shardctrler/param"
"6.5840/shardkv1/shardgrp"
"6.5840/tester1"
)
type Test struct {
t *testing.T
*kvtest.Test
sck *shardctrler.ShardCtrler
part string
leases bool
maxraftstate int
mu sync.Mutex
ngid tester.Tgid
}
const (
Controler = tester.Tgid(0) // controler uses group 0 for a kvraft group
NSRV = 3 // servers per group
INTERGRPDELAY = 200 // time in ms between group changes
)
// Setup kvserver for the shard controller and make the controller
func MakeTestMaxRaft(t *testing.T, part string, reliable, leases bool, maxraftstate int) *Test {
ts := &Test{
ngid: shardcfg.Gid1 + 1, // Gid1 is in use
t: t,
leases: leases,
maxraftstate: maxraftstate,
}
cfg := tester.MakeConfig(t, 1, reliable, kvsrv.StartKVServer)
ts.Test = kvtest.MakeTest(t, cfg, false, ts)
ts.Begin(part)
return ts
}
func MakeTest(t *testing.T, part string, reliable bool) *Test {
return MakeTestMaxRaft(t, part, reliable, false, -1)
}
func MakeTestLeases(t *testing.T, part string, reliable bool) *Test {
return MakeTestMaxRaft(t, part, reliable, true, -1)
}
func (ts *Test) MakeClerk() kvtest.IKVClerk {
clnt := ts.Config.MakeClient()
ck := MakeClerk(clnt, ts.makeShardCtrler())
return &kvtest.TestClerk{ck, clnt}
}
func (ts *Test) DeleteClerk(ck kvtest.IKVClerk) {
tck := ck.(*kvtest.TestClerk)
ts.DeleteClient(tck.Clnt)
}
func (ts *Test) ShardCtrler() *shardctrler.ShardCtrler {
return ts.sck
}
func (ts *Test) makeShardCtrler() *shardctrler.ShardCtrler {
ck, _ := ts.makeShardCtrlerClnt()
return ck
}
func (ts *Test) makeShardCtrlerClnt() (*shardctrler.ShardCtrler, *tester.Clnt) {
clnt := ts.Config.MakeClient()
return shardctrler.MakeShardCtrler(clnt, ts.leases), clnt
}
func (ts *Test) makeKVClerk() *kvsrv.Clerk {
srv := tester.ServerName(tester.GRP0, 0)
clnt := ts.Config.MakeClient()
return kvsrv.MakeClerk(clnt, srv).(*kvsrv.Clerk)
}
func (ts *Test) newGid() tester.Tgid {
ts.mu.Lock()
defer ts.mu.Unlock()
gid := ts.ngid
ts.ngid += 1
return gid
}
func (ts *Test) groups(n int) []tester.Tgid {
grps := make([]tester.Tgid, n)
for i := 0; i < n; i++ {
grps[i] = ts.newGid()
}
return grps
}
// Set up KVServervice with one group Gid1. Gid1 should initialize itself to
// own all shards.
func (ts *Test) setupKVService() tester.Tgid {
ts.sck = ts.makeShardCtrler()
scfg := shardcfg.MakeShardConfig()
ts.Config.MakeGroupStart(shardcfg.Gid1, NSRV, ts.StartServerShardGrp)
scfg.JoinBalance(map[tester.Tgid][]string{shardcfg.Gid1: ts.Group(shardcfg.Gid1).SrvNames()})
ts.sck.InitConfig(scfg)
return shardcfg.Gid1
}
func (ts *Test) StartServerShardGrp(servers []*labrpc.ClientEnd, gid tester.Tgid, me int, persister *tester.Persister) []tester.IService {
return shardgrp.StartServerShardGrp(servers, gid, me, persister, ts.maxraftstate)
}
// Add group gid
func (ts *Test) join(sck *shardctrler.ShardCtrler, gid tester.Tgid, srvs []string) rpc.Err {
cfg, _ := sck.Query()
newcfg := cfg.Copy()
ok := newcfg.JoinBalance(map[tester.Tgid][]string{gid: srvs})
if !ok {
return rpc.ErrVersion
}
err := sck.ChangeConfigTo(newcfg)
return err
}
func (ts *Test) joinGroups(sck *shardctrler.ShardCtrler, gids []tester.Tgid) rpc.Err {
for i, gid := range gids {
ts.Config.MakeGroupStart(gid, NSRV, ts.StartServerShardGrp)
if err := ts.join(sck, gid, ts.Group(gid).SrvNames()); err != rpc.OK {
return err
}
if i < len(gids)-1 {
time.Sleep(INTERGRPDELAY * time.Millisecond)
}
}
return rpc.OK
}
// Group gid leaves.
func (ts *Test) leave(sck *shardctrler.ShardCtrler, gid tester.Tgid) rpc.Err {
cfg, _ := sck.Query()
newcfg := cfg.Copy()
ok := newcfg.LeaveBalance([]tester.Tgid{gid})
if !ok {
return rpc.ErrVersion
}
return sck.ChangeConfigTo(newcfg)
}
func (ts *Test) leaveGroups(sck *shardctrler.ShardCtrler, gids []tester.Tgid) rpc.Err {
for i, gid := range gids {
if err := ts.leave(sck, gid); err != rpc.OK {
return err
}
ts.Config.ExitGroup(gid)
if i < len(gids)-1 {
time.Sleep(INTERGRPDELAY * time.Millisecond)
}
}
return rpc.OK
}
func (ts *Test) disconnectRaftLeader(gid tester.Tgid) (int, string) {
_, l := rsm.Leader(ts.Config, gid)
g := ts.Group(gid)
ln := g.SrvName(l)
g.DisconnectAll(l)
return l, ln
}
func (ts *Test) reconnectOldLeader(gid tester.Tgid, l int) {
g := ts.Group(gid)
g.ConnectOne(l)
}
func (ts *Test) disconnectClntFromLeader(clnt *tester.Clnt, gid tester.Tgid) int {
l, ln := ts.disconnectRaftLeader(gid)
p := ts.Group(gid).AllowServersExcept(l)
srvs := ts.Group(gid).SrvNamesTo(p)
clnt.Disconnect(ln)
clnt.ConnectTo(srvs)
return l
}
func (ts *Test) checkLogs(gids []tester.Tgid) {
for _, gid := range gids {
n := ts.Group(gid).LogSize()
s := ts.Group(gid).SnapshotSize()
if ts.maxraftstate >= 0 && n > 8*ts.maxraftstate {
ts.t.Fatalf("persister.RaftStateSize() %v, but maxraftstate %v",
n, ts.maxraftstate)
}
if ts.maxraftstate < 0 && s > 0 {
ts.t.Fatalf("maxraftstate is -1, but snapshot is non-empty!")
}
}
}
// make sure that the data really is sharded by
// shutting down one shard and checking that some
// Get()s don't succeed.
func (ts *Test) checkShutdownSharding(down, up tester.Tgid, ka []string, va []string) {
const NSEC = 2
ts.Group(down).Shutdown()
ts.checkLogs([]tester.Tgid{down, up}) // forbid snapshots
n := len(ka)
ch := make(chan string)
done := int32(0)
for xi := 0; xi < n; xi++ {
ck1 := ts.MakeClerk()
go func(i int) {
v, _, _ := ck1.Get(ka[i])
if atomic.LoadInt32(&done) == 1 {
return
}
if v != va[i] {
ch <- fmt.Sprintf("Get(%v): expected:\n%v\nreceived:\n%v", ka[i], va[i], v)
} else {
ch <- ""
}
}(xi)
}
// wait a bit, only about half the Gets should succeed.
ndone := 0
for atomic.LoadInt32(&done) != 1 {
select {
case err := <-ch:
if err != "" {
ts.Fatalf(err)
}
ndone += 1
case <-time.After(time.Second * NSEC):
atomic.StoreInt32(&done, 1)
break
}
}
//log.Printf("%d completions out of %d; down %d", ndone, n, down)
if ndone >= n {
ts.Fatalf("expected less than %d completions with one shard dead\n", n)
}
// bring the crashed shard/group back to life.
ts.Group(down).StartServers()
}
// Run one controler and then partition it after some time. Run
// another cntrler that must finish the first ctrler's unfinished
// shard moves. To ensure first ctrler is in a join/leave the test
// shuts down shardgrp `gid`. After the second controller is done,
// heal the partition to test if Freeze,InstallShard, and Delete are
// are fenced.
func (ts *Test) killCtrler(ck kvtest.IKVClerk, gid tester.Tgid, ka, va []string) {
const (
NSLEEP = 2
RAND = 1000
JOIN = 1
LEAVE = 2
)
sck, clnt := ts.makeShardCtrlerClnt()
if err := sck.InitController(); err != rpc.OK {
ts.Fatalf("failed to init controller %v", err)
}
cfg, _ := ts.ShardCtrler().Query()
num := cfg.Num
state := 0
ngid := tester.Tgid(0)
go func() {
for {
ngid = ts.newGid()
state = JOIN
err := ts.joinGroups(sck, []tester.Tgid{ngid})
if err == rpc.OK {
state = LEAVE
err = ts.leaveGroups(sck, []tester.Tgid{ngid})
} else {
//log.Printf("deposed err %v", err)
return
}
}
}()
r := rand.Int() % RAND
d := time.Duration(r) * time.Millisecond
time.Sleep(d)
//log.Printf("shutdown gid %d after %dms", gid, r)
ts.Group(gid).Shutdown()
// sleep for a while to get the chance for the controler to get stuck
// in join or leave, because gid is down
time.Sleep(NSLEEP * time.Second)
//log.Printf("disconnect sck %v ngid %d num %d state %d", d, ngid, num, state)
// partition controller
clnt.DisconnectAll()
if ts.leases {
// wait until sck's lease expired before restarting shardgrp `gid`
time.Sleep((param.LEASETIMESEC + 1) * time.Second)
}
ts.Group(gid).StartServers()
// start new controler to pick up where sck left off
sck0, clnt0 := ts.makeShardCtrlerClnt()
if err := sck0.InitController(); err != rpc.OK {
ts.Fatalf("failed to init controller %v", err)
}
cfg, _ = sck0.Query()
s := "join"
if state == LEAVE {
s = "leave"
}
//log.Printf("%v cfg %v recovered %s", s, cfg, s)
if cfg.Num <= num {
ts.Fatalf("didn't recover; expected %d > %d", num, cfg.Num)
}
present := cfg.IsMember(ngid)
if (state == JOIN && !present) || (state == LEAVE && present) {
ts.Fatalf("didn't recover %d correctly after %v", ngid, s)
}
if state == JOIN && present {
// cleanup if disconnected after join but before leave
ts.leaveGroups(sck0, []tester.Tgid{ngid})
}
for i := 0; i < len(ka); i++ {
ts.CheckGet(ck, ka[i], va[i], rpc.Tversion(1))
}
sck0.ExitController()
if ts.leases {
// reconnect old controller, which shouldn't be able
// to do anything
clnt.ConnectAll()
time.Sleep(1 * time.Second)
for i := 0; i < len(ka); i++ {
ts.CheckGet(ck, ka[i], va[i], rpc.Tversion(1))
}
}
ts.Config.DeleteClient(clnt)
ts.Config.DeleteClient(clnt0)
}
func (ts *Test) electCtrler(ck kvtest.IKVClerk, ka, va []string) {
const (
NSEC = 5
N = 4
)
ch := make(chan struct{})
f := func(ch chan struct{}, i int) {
for true {
select {
case <-ch:
return
default:
ngid := ts.newGid()
sck := ts.makeShardCtrler()
if err := sck.InitController(); err != rpc.OK {
ts.Fatalf("failed to init controller %v", err)
}
//log.Printf("%d(%p): join/leave %v", i, sck, ngid)
if err := ts.joinGroups(sck, []tester.Tgid{ngid}); err == rpc.OK {
ts.leaveGroups(sck, []tester.Tgid{ngid})
}
sck.ExitController()
}
}
}
for i := 0; i < N; i++ {
go f(ch, i)
}
// let f()'s run for a while
time.Sleep(NSEC * time.Second)
for i := 0; i < N; i++ {
ch <- struct{}{}
}
for i := 0; i < len(ka); i++ {
ts.CheckGet(ck, ka[i], va[i], rpc.Tversion(1))
}
}